Abstract
In this article we deduce necessary and sufficient conditions for the presence of “Conti-type”, highly symmetric, exactly stress-free constructions in the geometrically non-linear, planar n-well problem, generalising results of Conti et al. (Proc R Soc A 473(2203):20170235, 2017). Passing to the limit \(n\rightarrow \infty \), this allows us to treat solid crystals and nematic elastomer differential inclusions simultaneously. In particular, we recover and generalise (non-linear) planar tripole star type deformations which were experimentally observed in Kitano and Kifune (Ultramicroscopy 39(1–4):279–286, 1991), Manolikas and Amelinckx (Physica Status Solidi (A) 60(2):607–617, 1980; Physica Status Solidi (A) 61(1):179–188, 1980). Furthermore, we discuss the corresponding geometrically linearised problem.
Similar content being viewed by others
References
Agostiniani, V., Dal Maso, G., DeSimone, A.: Attainment results for nematic elastomers. Proc. R. Soc. Edinb. Sect. A Math. 145(4), 669–701, 2015
Ball, J.M.: Mathematical models of martensitic microstructure. Mater. Sci. Eng. A378(1–2), 61–69, 2004
Bhattacharya, K.: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford Series on Materials Modeling. Oxford University Press, Oxford 2003
Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100(1), 13–52, 1987
Bladon, P., Warner, M., Terentjev, E.M.: Orientational order in strained nematic networks. Macromolecules27, 7067–7075, 1994
Cesana, P., DeSimone, A.: Quasiconvex envelopes of energies for nematic elastomers in the small strain regime and applications. J. Mech. Phys. Solids59(4), 787–803, 2011
Conti, S., Dolzmann, G., Kirchheim, B.: Existence of lipschitz minimizers for the three-well problem in solid–solid phase transitions. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis24(6), 953–962, 2007
Cesana, P.: Relaxation of multiwell energies in linearized elasticity and applications to nematic elastomers. Arch. Ration. Mech. Anal. 197(3), 903–923, 2010
Curnoe, S.H., Jacobs, A.E.: Time evolution of tetragonal–orthorhombic ferroelastics. Phys. Rev. B64(6), 064101, 2001
Cui, Y.-W., Koyama, T., Ohnuma, I., Oikawa, K., Kainuma, R., Ishida, K.: Simulation of hexagonal–orthorhombic phase transformation in polycrystals. Acta Mater. 55(1), 233–241, 2007
Conti, S., Klar, M., Zwicknagl, B.: Piecewise affine stress-free martensitic inclusions in planar nonlinear elasticity. Proc. R. Soc. A473(2203), 20170235, 2017
Conti, S.: Quasiconvex functions incorporating volumetric constraints are rank-one convex. Journal de mathématiques pures et appliquées90(1), 15–30, 2008
Cesana, P., Plucinsky, P., Bhattacharya, K.: Effective behavior of nematic elastomer membranes. Arch. Ration. Mech. Anal. 218(2), 863–905, 2015
Cesana, P., Porta, M., Lookman, T.: Asymptotic analysis of hierarchical martensitic microstructure. J. Mech. Phys. Solids72, 174–192, 2014
Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178(1), 125–148, 2005
Dacorogna, B.: Direct Methods in the Calculus of Variations, vol. 78. Springer, Berlin 2007
DeSimone, A., Dolzmann, G.: Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies. Arch. Ration. Mech. Anal. 161(3), 181–204, 2002
Dacorogna, B., Marcellini, P.: Implicit Partial Differential Equations, vol. 37. Springer, Berlin 2012
Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin 1986
Jacobs, A.E., Curnoe, S.H., Desai, R.C.: Landau theory of domain patterns in ferroelastics. Mater. Trans. 45(4), 1054–1059, 2004
Kundler, I., Finkelmann, H.: Strain-induced director reorientation in nematic liquid single crystal elastomers. Macromol. Rapid Commun. 16(9), 679–686, 1995
Kirchheim, B.: Rigidity and Geometry of Microstructures. MPI-MIS Lecture Notes, 2003
Kitano, Y., Kifune, K.: HREM study of disclinations in MgCd ordered alloy. Ultramicroscopy39(1–4), 279–286, 1991
Kitano, Y., Kifune, K., Komura, Y.: Star-lisclination in a ferro-elastic material B19 MgCd alloy. Le Journal de Physique Colloques49(C5), C5–201, 1988
Kirchheim, B., Müller, S., Šverák, V.: Studying nonlinear PDE by geometry in matrix space. Geometric Analysis and Nonlinear Partial Differential Equations. Springer, 347–395, 2003
Manolikas, C., Amelinckx, S.: Phase transitions in ferroelastic lead orthovanadate as observed by means of electron microscopy and electron diffraction. I. Static observations. Physica Status Solidi (A)60(2), 607–617, 1980
Manolikas, C., Amelinckx, S.: Phase transitions in ferroelastic lead orthovanadate as observed by means of electron microscopy and electron diffraction. II. Dynamic Observations. Physica Status Solidi (A)61(1), 179–188, 1980
Müller, S., Šverák, V.: Unexpected solutions of first and second order partial differential equations. Proceedings of the International Congress of Mathematicians, volume 2 of Documents. Mathematica, Berlin, 691–702, 1998
Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transitions and partial differential equations. J. Eur. Math. Soc. 1, 393–422, 1999. https://doi.org/10.1007/s100970050012
Patching, S.: Microstructures in the hexagonal-to-rhombic phase transformation. OxPDE summer research project, 2014
Plucinsky, P., Bhattacharya, K.: Interplay of microstructure and wrinkling in nematic elastomer membranes. XXIV ICTAM, 2016
Porta, M., Lookman, T.: Heterogeneity and phase transformation in materials: energy minimization, iterative methods and geometric nonlinearity. Acta Mater. 61(14), 5311–5340, 2013
Pompe, W.: Explicit construction of piecewise affine mappings with constraints. Bull. Pol. Acad. Sci. Math. 58(3), 209–220, 2010
Rüland, A., Taylor, J.M., Zillinger, C.: Convex integration arising in the modelling of shape-memory alloys: some remarks on rigidity, flexibility and some numerical implementations. J. Nonlinear Sci. 29, 2137–2184, 2018
Rüland, A.: The cubic-to-orthorhombic phase transition: rigidity and non-rigidity properties in the linear theory of elasticity. Arch. Ration. Mech. Anal. 221(1), 23–106, 2016
Rüland, A., Zillinger, C., Zwicknagl, B.: Higher Sobolev regularity of convex integration solutions in elasticity: the Dirichlet problem with affine data in int\((\text{ K }^{lc})\). SIAM J. Math. Anal. 50(4), 3791–3841, 2018
Rüland, A., Zillinger, C., Zwicknagl, B.: Higher Sobolev regularity of convex integration solutions in elasticity: the planar geometrically linearized hexagonal-to-rhombic phase transformation. J. Elast. 136, 1–76, 2019
Vicens, J., Delavignette, P.: A particular domain configuration observed in a new phase of the Ta–N system. Physica Status Solidi (A)33(2), 497–509, 1976
Warner, M., Terentjev, E.M.: Liquid Crystal Elastomers. International Series of Monographs on Physics. Oxford University Press, Oxford 2003
Wen, Y.H., Wang, Y., Chen, L.-Q.: Effect of elastic interaction on the formation of a complex multi-domain microstructural pattern during a coherent hexagonal to orthorhombic transformation. Acta Mater. 47(17), 4375–4386, 1999
Zhang, Z., James, R.D., Müller, S.: Energy barriers and hysteresis in martensitic phase transformations. Acta Mater. 57(15), 4332–4352, 2009
Acknowledgements
P.C. is supported by JSPS Grant-in-Aid for Young Scientists (B) 16K21213 and partially by JSPS Innovative Area Grant 19H05131. P.C. holds an honorary appointment at La Trobe University and is a member of GNAMPA. C.Z. acknowledges a travel grant from the Simon’s foundation. B.Z. would like to thank Sergio Conti for helpful discussions, and acknowledges support by the Berliner Chancengleichheitsprogramm and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through SFB 1060 “The Mathematics of Emergent Effects” (Project 211504053).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by K. Bhattacharya.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A: Necessary Relation Between the Radius of the Outer Polygon and the Radius of the Inner Polygon: The Solutions to (31)
In this first part of the appendix, we provide the remainder of the argument from Proposition 1.
To this end, we solve
which is (31) squared. We get the following four solutions of the equation (31) for x:
\(x=\frac{1}{\cos \frac{\pi }{n}}\left( \cos \left( \frac{\rho _n}{2}\right) - \sqrt{\sin (\frac{2\pi }{n}\alpha )\sin \left( \frac{2\pi }{n}(1-\alpha )\right) } \right) \),
\(x=\frac{1}{\cos \frac{\pi }{n}}\left( \cos \left( \frac{\rho _n}{2}\right) + \sqrt{\sin (\frac{2\pi }{n}\alpha )\sin \left( \frac{2\pi }{n}(1-\alpha )\right) } \right) \),
\(x=\frac{1}{\cos \bigl (\frac{3\pi }{n}\bigr )} \left( \cos \left( \frac{2\pi }{n}\right) \cos \left( \frac{\rho _n}{2} \right) -\sqrt{\cos ^2\left( \frac{2\pi }{n}\right) \cos ^2 \left( \frac{\rho _n}{2}\right) -\cos \left( \frac{3\pi }{n}\right) \cos \left( \frac{\pi }{n}\right) } \right) \),
\(x=\frac{1}{\cos \bigl (\frac{3\pi }{n}\bigr )}\left( \cos \left( \frac{2\pi }{n}\right) \cos \left( \frac{\rho _n}{2}\right) +\sqrt{\cos ^2\left( \frac{2\pi }{n}\right) \cos ^2\left( \frac{\rho _n}{2}\right) -\cos \left( \frac{3\pi }{n}\right) \cos \left( \frac{\pi }{n}\right) } \right) \),
where as in (iv), \({\rho _n}:=\frac{2\pi }{n}(1-2\alpha )\). We now claim that just the first solution is admissible for us. Here and below we define a solution x of (99) admissible if \(x\in (0,1)\) and it satisfies (31). In order to prove our claim, we can assume without loss of generality that
is real, otherwise the third and fourth solutions are not admissible. The proof of the claim is as follows:
Second solution: We estimate
$$\begin{aligned} x \geqq \frac{\cos \left( \frac{{\rho _n}}{2} \right) }{\cos \left( \frac{\pi }{n} \right) }. \end{aligned}$$Since \(\alpha \in \left( 0,1\right) \) it is clear that the second solution is such that \(x\geqq 1\) for any \(\alpha \in (0,1)\), any \(n\geqq 3\).
Third solution: \(x\geqq 1\) if \(n=3,4\) and \(\alpha \in [0,1].\) We can hence restrict to the case \(n>4\). We now claim that
$$\begin{aligned} 1+ x^2\cos \left( \frac{2\pi }{n}\right) -2x\cos \left( \frac{\pi }{n}\right) \cos \left( \frac{\rho _n}{2}\right) <0 \end{aligned}$$(100)for any \(\alpha \in (0,1)\), and any \(n\geqq 4\). Since the left-hand side of (31) is always non-negative, the claim would imply that the third solution of (99) does not satisfy (31), and is hence not admissible. We plot \(1+ x^2\cos \bigl (\frac{2\pi }{n}\bigr )-2x\cos \bigl (\frac{\pi }{n}\bigr )\cos \bigl (\frac{{\rho _n}}{2}\bigr )\) for \(n\in \{5,\dots ,50\}\) in Figure 18. For large n, we have that
$$\begin{aligned} x = 1-\frac{2\pi }{n}\sqrt{(\alpha -\alpha ^2)} +\frac{2\pi ^2}{n^2}(-\alpha ^2+\alpha +1) + O(n^{-3}), \end{aligned}$$and, therefore,
$$\begin{aligned}&1+ x^2\cos \left( \frac{2\pi }{n}\right) -2x\cos \left( \frac{\pi }{n}\right) \\&\quad \cos \left( \frac{\rho _n}{2}\right) = -\frac{4\pi ^3}{n^3}\sqrt{\alpha (1-\alpha )} +O(n^{-4}) < 0 \end{aligned}$$for any \(\alpha \in (0,1),\) and for any n large enough.
Fourth solution: It is easy to see that it is negative for any \(\alpha \in [0,1]\) when \(n=3,4,5\). Indeed, \(\cos \frac{3\pi }{n}<0\). If \(n=6\) we get \(x=\infty ,\) while for \(n>6\) we have \(x>1\). Indeed, in this case,
$$\begin{aligned} x\geqq \frac{2\cos \left( \frac{2\pi }{n}\right) \cos \left( \frac{\rho _n}{2}\right) }{2\cos \left( \frac{3\pi }{n}\right) } \geqq \frac{\cos \left( \frac{2\pi }{n}\right) \cos \left( \frac{\pi }{n}\right) }{\cos \left( \frac{3\pi }{n}\right) }= \frac{1}{2}\left( 1+\frac{1}{2\cos \left( \frac{2\pi }{n}\right) -1} \right) >1. \end{aligned}$$Therefore, for any \(\alpha \in [0,1]\) and any \(n\geqq 3\) the fourth solution is not admissible.
Appendix B: Proof of Corollary 2.4
In this part of the appendix we show that equation (43)
is satisfied. In order to simplify calculations, we express all matrices with respect to the basis \((e_{11}, e_{11}^\perp )\) and thus have to show that
We further recall that
In particular, since \(\alpha \in (0,1)\), we may multiply the claimed equation with \(a \sin (\frac{2\pi }{n}\alpha ) \ne 0 \) and for simplicity of notation introduce \(t:=\frac{2\pi }{n}\alpha \) and \(s=\frac{2\pi }{n}(1-\alpha ) = \frac{2\pi }{n}-t\). With this notation, we have to show that
We consider each matrix entry separately. The claimed equality for the upper left entry is given by
In order to show this, we may factor out \(\sin (s)\) and use the angle addition formulas:
We then collect terms involving \(\cos (t)\) and \(\sin (t)\) as
where we used the half angle identities for \(\cos (2x)\) and \(\sin (2x)\) in the last equality.
The calculation for the bottom right-entry is analogous with the role of s and t and the sign of \((\sin (t)-\sin (s))\tan (\frac{\pi }{n})\)) interchanged. The bottom left equality \(\sin (t)\sin (s)=\sin (t)\sin (s)\) is always satisfied. It thus only remains to verify equality of the upper right entry, which can be simplified to read
Factoring out the factor \((\sin (t)-\sin (s))\), it suffices to prove
As above, the claimed equality then again follows by using angle addition formulas.
Appendix C: Reduction to Cauchy–Green Tensors Used in the Proof of Proposition 2.6
Last but not least, we provide the argument (used in the proof of Proposition 2.6) that it is possible to reduce the differential inclusion (23) to an inclusion for the associated Cauchy–Green tensors.
Lemma C.1
Suppose that \(\det (M)=\det ({H})>0\), then the inclusion
is satisfied, if and only if
This characterisation follows from basic properties of the singular value decomposition.
Proof
We observe that (103) implies (104). Thus, we only consider the converse and assume that
for some \(P \in {\mathcal {P}}_n\). Since \(M^TM\) is symmetric, there exists \(Q \in SO(2)\) and a diagonal matrix \({{\,\mathrm{diag}\,}}(\lambda _1,\lambda _2)\), with \(\lambda _1 \lambda _2=\det (M)^2\ne 0\), \(\lambda _1,\lambda _2>0\), such that
It follows that
satisfy
and thus \(\tilde{M}, \tilde{M_1} \in SO(2)\). Here we used that \(\det (M)=\det ({H})>0\). In particular,
where \(\tilde{M}\tilde{M}^T_1 \in SO(2)\), which implies the result. \(\quad \square \)
Rights and permissions
About this article
Cite this article
Cesana, P., Della Porta, F., Rüland, A. et al. Exact Constructions in the (Non-linear) Planar Theory of Elasticity: From Elastic Crystals to Nematic Elastomers. Arch Rational Mech Anal 237, 383–445 (2020). https://doi.org/10.1007/s00205-020-01511-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-020-01511-9