Skip to main content
Log in

Sufficient Conditions for Dual Cascade Flux Laws in the Stochastic 2d Navier–Stokes Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We provide sufficient conditions for mathematically rigorous proofs of the third order universal laws capturing the energy flux to large scales and enstrophy flux to small scales for statistically stationary, forced-dissipated 2d Navier–Stokes equations in the large-box limit. These laws should be regarded as 2d turbulence analogues of the 4/5 law in 3d turbulence, predicting a constant flux of energy and enstrophy (respectively) through the two inertial ranges in the dual cascade of 2d turbulence. Conditions implying only one of the two cascades are also obtained, as well as compactness criteria which show that the provided sufficient conditions are not far from being necessary. The specific goal of the work is to provide the weakest characterizations of the “0-th laws” of 2d turbulence in order to make mathematically rigorous predictions consistent with experimental evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A solution is spatially homogeneous if \(u(\cdot ,\cdot )\) has the same law as \(u(\cdot ,\cdot + y)\) for all \(y \in {\mathbb {R}}^2\). See e.g. [2, 6, 38] for more discussions statistical symmetries.

References

  1. Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Vol. 55, Courier Corporation, 1965

  2. Basson, A.: Spatially homogeneous solutions of 3D stochastic Navier–Stokes equations and local energy inequality. Stoch. Process. Appl. 118(3), 417–451, 2008

    MathSciNet  MATH  Google Scholar 

  3. Batchelor, G.K.: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids12(12), II-233, 1969

    MATH  Google Scholar 

  4. Bedrossian, J., Blumenthal, A., Punshon-Smith, S.: Lagrangian chaos and scalar advection in stochastic fluid mechanics 2018. arXiv:1809.06484

  5. Bedrossian, J., Zelati, M.Coti, Glatt-Holtz, N.: Invariant measures for passive scalars in the small noise inviscid limit. Commun. Math. Phys. 348(1), 101–127, 2016

    ADS  MathSciNet  MATH  Google Scholar 

  6. Bedrossian, J., Zelati, M.Coti, Punshon-Smith, S., Weber, F.: A sufficient condition for the Kolmogorov 4/5 law for stationary martingale solutions to the 3D Navier–Stokes equations. Commun. Math. Phys. 367(3), 1045–1075, 2019

    ADS  MathSciNet  MATH  Google Scholar 

  7. Bernard, D.: Three-point velocity correlation functions in two-dimensional forced turbulence. Phys. Rev. E60(5), 6184, 1999

    ADS  Google Scholar 

  8. Bernard, D.: Influence of friction on the direct cascade of the 2d forced turbulence. EPL50(3), 333, 2000

    ADS  Google Scholar 

  9. Biskamp, D.: Magnetohydrodynamic Turbulence. Cambridge University Press, Cambridge 2003

    MATH  Google Scholar 

  10. Biswas, A., Jolly, M.S., Martinez, V.R., Titi, E.S.: Dissipation length scale estimates for turbulent flows: a Wiener algebra approach. J. Nonlinear Sci. 24(3), 441–471, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  11. Boffetta, G.: Energy and enstrophy fluxes in the double cascade of two-dimensional turbulence. J. Fluid Mech. 589, 253–260, 2007

    ADS  MATH  Google Scholar 

  12. Boffetta, G., Musacchio, S.: Evidence for the double cascade scenario in two-dimensional turbulence. Phys. Rev. E82, 016307, 2010

    ADS  Google Scholar 

  13. Boffetta, G., Ecke, R.E.: Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427–451, 2012

    ADS  MathSciNet  MATH  Google Scholar 

  14. Bruneau, C.H., Kellay, H.: Experiments and direct numerical simulations of two-dimensional turbulence. Phys. Rev. E71, 046305, 2005

    ADS  Google Scholar 

  15. Cardoso, O., Marteau, D., Tabeling, P.: Quantitative experimental study of the free decay of quasi-two-dimensional turbulence. Phys. Rev. E49, 454–461, 1994

    ADS  Google Scholar 

  16. Cerbus, R.T., Goldburg, W.I.: Intermittency in 2d soap film turbulence. Phys. Fluids25(10), 105111, 2013

    ADS  Google Scholar 

  17. Cerbus, R.: Information perspective on turbulence. Ph.D. Thesis, 2015

  18. Cerbus, R.T., Chakraborty, P.: The third-order structure function in two dimensions: the Rashomon effect. Phys. Fluids29(11), 111110, 2017

    ADS  Google Scholar 

  19. Charney, J.G.: Geostrophic turbulence. J. Atmos. Sci. 28(6), 1087–1095, 1971

    ADS  Google Scholar 

  20. Chen, S., Ecke, R.E., Eyink, G.L., Rivera, M., Wan , M., Xiao , Z.: Physical mechanism of the two-dimensional inverse energy cascade. Phys. Rev. Lett. 96, 084502, 2006

    ADS  Google Scholar 

  21. Cheskidov, A., Shvydkoy, R.: Euler equations and turbulence: analytical approach to intermittency. SIAM J. Math. Anal. 46(1), 353–374, 2014

    MathSciNet  MATH  Google Scholar 

  22. Constantin, P., Ramos, F.: Inviscid limit for damped and driven incompressible Navier-Stokes equations in \(\mathbb{R}^{2}\). Commun. Math. Phys. 275(2), 529–551, 2007

    ADS  MATH  Google Scholar 

  23. Constantin, P., Tarfulea, A., Vicol, V.: Absence of anomalous dissipation of energy in forced two dimensional fluid equations. Arch. Ration. Mech. Anal. 212(3), 875–903, 2014

    MathSciNet  MATH  Google Scholar 

  24. Constantin, P., Weinan, E., Titi, E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165(1), 207–209, 1994

    ADS  MathSciNet  MATH  Google Scholar 

  25. Couder, Y., Chomaz, J., Rabaud, M.: On the hydrodynamics of soap films. Physica D37(1–3), 384–405, 1989

    ADS  Google Scholar 

  26. Dascaliuc, R., Foias, C., Jolly, M.: Estimates on enstrophy, palinstrophy, and invariant measures for 2-d turbulence. J. Differ. Equ. 248(4), 792–819, 2010

    ADS  MathSciNet  MATH  Google Scholar 

  27. De Karman, T., Howarth, L.: On the statistical theory of isotropic turbulence. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp. 192–215, 1938

  28. Dostoglou, S., Fursikov, A., Kahl, J.: Homogeneous and isotropic statistical solutions of the Navier–Stokes equations. Math. Phys. Electron. J.12, 2006

  29. Drivas, T.D.: Turbulent cascade direction and Lagrangian time-asymmetry. J. Nonlinear Sci. 29(1), 65–88, 2019

    ADS  MathSciNet  MATH  Google Scholar 

  30. Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity13(1), 249–255, 2000

    ADS  MathSciNet  MATH  Google Scholar 

  31. Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Physica D78(3–4), 222–240, 1994

    ADS  MathSciNet  MATH  Google Scholar 

  32. Eyink, G.L.: Exact results on stationary turbulence in 2d: consequences of vorticity conservation. Physica D91(1–2), 97–142, 1996

    ADS  MathSciNet  MATH  Google Scholar 

  33. Eyink, G.L.: Local 4/5-law and energy dissipation anomaly in turbulence. Nonlinearity16(1), 137–145, 2003

    ADS  MathSciNet  MATH  Google Scholar 

  34. Fjørtoft, R.: On the changes in the spectral distribution of kinetic energy for twodimensional, nondivergent flow. Tellus5(3), 225–230, 1953

    ADS  MathSciNet  Google Scholar 

  35. Flandoli, F., Gubinelli, M., Hairer, M., Romito, M.: Rigorous remarks about scaling laws in turbulent fluids. Commun. Math. Phys. 278(1), 1–29, 2008

    ADS  MathSciNet  MATH  Google Scholar 

  36. Flandoli, F., Maslowski, B.: Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Commun. Math. Phys. 172(1), 119–141, 1995

    ADS  MathSciNet  MATH  Google Scholar 

  37. Frisch, U., Sulem, P.-L.: Numerical simulation of the inverse cascade in two-dimensional turbulence. Phys. Fluids27(8), 1921–1923, 1984

    ADS  MATH  Google Scholar 

  38. Frisch, U.: Turbulence, Cambridge University Press, Cambridge, 1995. The legacy of A. N. Kolmogorov.

  39. Gharib, M., Derango, P.: A liquid film (soap film) tunnel to study two-dimensional laminar and turbulent shear flows. Physica D37(1), 406–416, 1989

    ADS  Google Scholar 

  40. Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. 164(3), 993–1032, 2006

    MathSciNet  MATH  Google Scholar 

  41. Hansen, A.E., Marteau, D., Tabeling, P.: Two-dimensional turbulence and dispersion in a freely decaying system. Phys. Rev. E58, 7261–7271, 1998

    ADS  Google Scholar 

  42. Isett, P.: A proof of Onsager’s conjecture. Ann. Math. 188(3), 871–963, 2018

    MathSciNet  MATH  Google Scholar 

  43. Kearsley, E.A., Fong, J.T.: Linearly independent sets of isotropic Cartesian tensors of ranks up to eight. J. Res. Natl. Bur. Stand. 49–58, 1975

  44. Kellay, H.: Hydrodynamics experiments with soap films and soap bubbles: a short review of recent experiments. Phys. Fluids29(11), 111113, 2017

    ADS  Google Scholar 

  45. Kellay, H., Goldburg, W.I.: Two-dimensional turbulence: a review of some recent experiments. Rep. Prog. Phys. 65, 845–894, 2002

    ADS  Google Scholar 

  46. Kolmogorov, A.: The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers. C. R. (Doklady) Acad. Sci. URSS (N.S.)30, 301–305, 1941

    MathSciNet  Google Scholar 

  47. Kolmogorov, A.N.: Dissipation of energy in the locally isotropic turbulence. C. R. (Doklady) Acad. Sci. URSS (N.S.)32, 16–18, 1941

    MathSciNet  MATH  Google Scholar 

  48. Kolmogorov, A.N.: On degeneration of isotropic turbulence in an incompressible viscous liquid. C. R. (Doklady) Acad. Sci. URSS (N. S.)31, 538–540, 1941

    MathSciNet  MATH  Google Scholar 

  49. Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids10(7), 1417–1423, 1967

    ADS  Google Scholar 

  50. Kraichnan, R.H., Montgomery, D.: Two-dimensional turbulence. Rep. Prog. Phys. 43(5), 547, 1980

    ADS  MathSciNet  Google Scholar 

  51. Kuksin, S., Shirikyan, A.: Mathematics of Two-dimensional Turbulence, vol. 194. Cambridge University Press, Cambridge 2012

    MATH  Google Scholar 

  52. Kupiainen, A.: Ergodicity of two dimensional turbulence (after Hairer and Mattingly), Astérisque 339, Exp. No. 1016, vii, 137–156. Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012–1026, 2011

  53. Leith, C.E.: Diffusion approximation for two-dimensional turbulence. Phys. Fluids11(3), 671–672, 1968

    ADS  Google Scholar 

  54. Lilly, D.K.: Numerical simulation of two-dimensional turbulence. Phys. Fluids12(12), II-240–II-249, 1969

    MATH  Google Scholar 

  55. Lindborg, E.: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech. 388, 259–288, 1999

    ADS  MATH  Google Scholar 

  56. Lindborg, E., Alvelius, K.: The kinetic energy spectrum of the two-dimensional enstrophy turbulence cascade. Phys. Fluids12(5), 945–947, 2000

    ADS  MATH  Google Scholar 

  57. Monin, A. S., Yaglom, A. M.: Statistical fluid mechanics: mechanics of turbulence. Vol. II, Dover Publications, Inc., Mineola, NY, 2007. Translated from the 1965 Russian original, Edited and with a preface by John L. Lumley, English edition updated, augmented and revised by the authors, Reprinted from the 1975 edition.

  58. Nazarenko, S.: Wave Turbulence, vol. 825. Springer, Berlin 2011

    MATH  Google Scholar 

  59. Nie, Q., Tanveer, S.: A note on third-order structure functions in turbulence. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455(1985), 1615–1635, 1999

    ADS  MathSciNet  MATH  Google Scholar 

  60. Paret, J., Jullien, M.-C., Tabeling, P.: Vorticity statistics in the two-dimensional enstrophy cascade. Phys. Rev. Lett. 83, 3418–3421, 1999

    ADS  Google Scholar 

  61. Paret, J., Tabeling, P.: Intermittency in the two-dimensional inverse cascade of energy: experimental observations. Phys. Fluids10, 3126–3136, 1998

    ADS  Google Scholar 

  62. Paret, J., Tabeling, P.: Experimental observation of the two-dimensional inverse energy cascade. Phys. Rev. Lett. 79, 4162–4165, 1997

    ADS  Google Scholar 

  63. Rivera, M.K., Aluie, H., Ecke, R.E.: The direct enstrophy cascade of two-dimensional soap film flows. Phys. Fluids26(5), 055105, 2014

    ADS  Google Scholar 

  64. Rivera, M.K., Daniel, W.B., Chen, S.Y., Ecke, R.E.: Energy and enstrophy transfer in decaying two-dimensional turbulence. Phys. Rev. Lett. 90, 104502, 2003

    ADS  Google Scholar 

  65. Rivera, M. K.: The inverse energy cascade of two-dimensional turbulence arXiv e-prints arXiv:physics/0103050. Ph.D. Dissertation, 2001

  66. Rutgers, M.A., Wu, X.L., Daniel, W.B.: Conducting fluid dynamics experiments with vertically falling soap films. Rev. Sci. Instrum. 72(7), 3025–3037, 2001

    ADS  Google Scholar 

  67. Rutgers, M.A.: Forced 2d turbulence: experimental evidence of simultaneous inverse energy and forward enstrophy cascades. Phys. Rev. Lett. 81, 2244–2247, 1998

    ADS  Google Scholar 

  68. Sommeria, J.: Experimental study of the two-dimensional inverse energy cascade in a square box. J. Fluid Mech. 170, 139–168, 1986

    ADS  Google Scholar 

  69. Tabeling, P.: Two-dimensional turbulence: a physicist approach. Phys. Rep. 362(1), 1–62, 2002

    ADS  MathSciNet  MATH  Google Scholar 

  70. Vishik, M.I., Fursikov, A.V.: Mathematical Problems of Statistical Hydromechanics, vol. 9. Springer, Berlin 2012

    MATH  Google Scholar 

  71. Vorobieff, P., Rivera, M., Ecke, R.E.: Soap film flows: statistics of two-dimensional turbulence. Phys. Fluids11(8), 2167–2177, 1999

    ADS  MathSciNet  MATH  Google Scholar 

  72. Xiao, Z., Wan, M., Chen, S., Eyink, G.L.: Physical mechanism of the inverse energy cascade of two-dimensional turbulence: a numerical investigation. J. Fluid Mech. 619, 1–44, 2009

    ADS  MathSciNet  MATH  Google Scholar 

  73. Xie, J.-H., Bühler, O.: Exact third-order structure functions for two-dimensional turbulence. J. Fluid Mech. 851, 672–686, 2018

    ADS  MathSciNet  Google Scholar 

  74. Yaglom, A.: On the local structure of a temperature field in a turbulent flow. Dokl. akad. nauk sssr, pp. 743–746, 1949

  75. Yakhot, V.: Two-dimensional turbulence in the inverse cascade range. Phys. Rev. E60(5), 5544, 1999

    ADS  MathSciNet  Google Scholar 

  76. Zakharov, V.E., L’vov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence I: Wave Turbulence. Springer, Berlin 2012

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Weber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

J.B. was supported by NSF CAREER grant DMS-1552826 and NSF RNMS 1107444 (Ki-Net). M.C.Z. was supported by the Royal Society through a University Research Fellowship (URF\({\backslash }\)R1\({\backslash } \)191492). S.P-S. was supported by NSF DMS-1803481. F.W. was supported in part by NSF DMS-1912854.

Additional information

Communicated by V. Šverák

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Isotropic Sixth Order Tensors

Appendix A. Isotropic Sixth Order Tensors

We need the following lemma in Section 5 in order to provide high order expansions in the energy balance:

Lemma A.1

(Expression for an isotropic sixth order tensor) We have

Proof

The left hand side is an isotropic sixth order tensor. From [43], we know that it is a linear combination of 15 fundamental isotropic tensors of the form \( \delta _{i,j}\delta _{k,m}\delta _{p,q}\) and all permutations of ijkmpq in this expression. Since ijkmpq are interchangeable in \(\fint _{\mathbb {S}\,}n^i n^j n^k n^m n^p n^q \,{\mathrm {d}}n\), they must all occur with the same factor, and therefore

for some constant \(\kappa \in {\mathbb {R}}\). It remains to compute \(\kappa \). We have for \(i=j=k=m=p=q\)

In this case, none of the 15 terms vanishes and therefore \(15\kappa = \frac{5}{16}\) and hence \(\kappa =\frac{1}{48}\). \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedrossian, J., Coti Zelati, M., Punshon-Smith, S. et al. Sufficient Conditions for Dual Cascade Flux Laws in the Stochastic 2d Navier–Stokes Equations. Arch Rational Mech Anal 237, 103–145 (2020). https://doi.org/10.1007/s00205-020-01503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01503-9

Navigation