Skip to main content

Many-Particle Limits in Molecular Solvation

Abstract

In this paper, the authors study the limit of a sharp interface model for the solvation of charged particles in an implicit solvent as the number of solute particles and the size of the surrounding box tend to infinity. The energy is given by a combination of local terms accounting for the physical presence of the particles in the solvent and a nonlocal electric energy with or without an ionic effect. In the presence of an ionic effect, the authors prove a screening effect in the limit, i.e., the limit is completely localized and hence electric long-range interactions of the particles can be neglected. In the absence of the ionic effect, the authors show that the behavior of the energy depends on the scaling of the number of particles with respect to the size of the surrounding box. All scaling regimes are identified and corresponding limit results proved. In regimes with many solute particles this limit includes electric interactions of \(H^{-1}\)-type between the particles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Braides, A.: \(\Gamma \)-Convergence for Beginners. Oxford Lecture Series in Mathematics and Its Applications, vol. 22. Oxford University Press, Oxford 2002

  2. 2.

    Capet, S., Friesecke, G.: Minimum energy configurations of classical charges: large \(N\) asymptotics. Appl. Math. Res. Express. AMRX1, 47–73, 2009

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Cermelli, P., Leoni, G.: Renormalized energy and forces on dislocations. SIAM J. Math. Anal. 37(4), 1131–1160, 2005. https://doi.org/10.1137/040621636

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648, 2006. https://doi.org/10.1137/040615286

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Che, J., Dzubiella, J., Li, B., McCammon, J.A.: Electrostatic free energy and its variations in implicit solvent models. J. Phys. Chem. B112(10), 3058–3069, 2008. https://doi.org/10.1021/jp7101012

    Article  Google Scholar 

  6. 6.

    Dai, S., Li, B., Lu, J.: Convergence of Phase-Field Free Energy and Boundary Force for Molecular Solvation. arXiv preprint arXiv:1606.04620 (2016)

  7. 7.

    Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence (Progress in Nonlinear Differential Equations and Their Applications), vol. 8. Birkhäuser Boston Inc., Boston 1993

  8. 8.

    De Luca, L., Garroni, A., Ponsiglione, M.: \(\Gamma \)-convergence analysis of systems of edge dislocations: the self energy regime. Arch. Ration. Mech. Anal. 206(3), 885–910, 2012. https://doi.org/10.1007/s00205-012-0546-z

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Dzubiella, J., Swanson, J.M., McCammon, J.A.: Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models. Phys. Rev. Lett. 96(8), 087802, 2006. https://doi.org/10.1103/PhysRevLett.96.087802

    ADS  Article  Google Scholar 

  10. 10.

    Dzubiella, J., Swanson, J.M.J., McCammon, J.A.: Coupling nonpolar and polar solvation free energies in implicit solvent models. J. Chem. Phys. 124(8), 084905, 2006. https://doi.org/10.1063/1.2171192

    ADS  Article  Google Scholar 

  11. 11.

    Fogolari, F., Briggs, J.M.: On the variational approach to Poisson–Boltzmann free energies. Chem. Phys. Lett. 281(1), 135–139, 1997. https://doi.org/10.1016/S0009-2614(97)01193-7

    ADS  Article  Google Scholar 

  12. 12.

    Garroni, A., Leoni, G., Ponsiglione, M.: Gradient theory for plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. (JEMS)12(5), 1231–1266, 2010. https://doi.org/10.4171/JEMS/228

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Li, B.: Minimization of electrostatic free energy and the Poisson–Boltzmann equation for molecular solvation with implicit solvent. SIAM J. Math. Anal. 40(6), 2536–2566, 2009. https://doi.org/10.1137/080712350

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Li, B., Liu, Y.: Diffused solute-solvent interface with Poisson–Boltzmann electrostatics: free-energy variation and sharp-interface limit. SIAM J. Appl. Math. 75(5), 2072–2092, 2015

    MathSciNet  Article  Google Scholar 

  15. 15.

    Li, B., Zhao, Y.: Variational implicit solvation with solute molecular mechanics: from diffuse-interface to sharp-interface models. SIAM J. Appl. Math. 73(1), 1–23, 2013. https://doi.org/10.1137/120883426

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Lieb, E.H., Loss, M.: Analysis (Graduate Studies in Mathematics), vol. 14, 2nd edn. American Mathematical Society, Providence 2001

    Google Scholar 

  17. 17.

    Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa3(17), 43–77, 1963

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Ponsiglione, M.: Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous. SIAM J. Math. Anal. 39(2), 449–469, 2007. https://doi.org/10.1137/060657054

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Sharp, K.A., Honig, B.: Calculating total electrostatic energies with the nonlinear Poisson–Boltzmann equation. J. Phys. Chem. 94(19), 7684–7692, 1990. https://doi.org/10.1021/j100382a068

    Article  Google Scholar 

  20. 20.

    Sion, M.: On general minimax theorems. Pacific J. Math. 8, 171–176, 1958

    MathSciNet  Article  Google Scholar 

  21. 21.

    Wang, Z., Che, J., Cheng, L.T., Dzubiella, J., Li, B., McCammon, J.A.: Level-set variational implicit-solvent modeling of biomolecules with the Coulomb-field approximation. J. Chem. Theory Comput. 8(2), 386–397, 2012

    Article  Google Scholar 

  22. 22.

    Zhou, S., Cheng, L.T., Dzubiella, J., Li, B., McCammon, J.A.: Variational implicit solvation with Poisson-Boltzmann theory. J. Chem. Theory Comput. 10(4), 1454–1467, 2014. https://doi.org/10.1021/ct401058w

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Center for Nonlinear Analysis where this work was carried out.The research of Janusz Ginster was funded by the National Science Foundation under NSF PIRE Grant No. OISE-0967140. The authors are deeply grateful to Irene Fonseca and Giovanni Leoni for bringing the topic to their attention and for many fruitful discussions. The authors would also like to thank the two anonymous referees for their very thorough review of the manuscript and their helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Janusz Ginster.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by G. Friesecke.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ginster, J., Gladbach, P. Many-Particle Limits in Molecular Solvation. Arch Rational Mech Anal 235, 793–839 (2020). https://doi.org/10.1007/s00205-019-01431-3

Download citation