Advertisement

Archive for Rational Mechanics and Analysis

, Volume 234, Issue 1, pp 211–316 | Cite as

Nonlinear and Linear Elastodynamic Transformation Cloaking

  • Arash YavariEmail author
  • Ashkan Golgoon
Article

Abstract

In this paper we formulate the problems of nonlinear and linear elastodynamic transformation cloaking in a geometric framework. In particular, it is noted that a cloaking transformation is neither a spatial nor a referential change of frame (coordinates); a cloaking transformation maps the boundary-value problem of an isotropic and homogeneous elastic body (virtual problem) to that of an anisotropic and inhomogeneous elastic body with a hole surrounded by a cloak that is to be designed (physical problem). The virtual body has a desired mechanical response while the physical body is designed to mimic the same response outside the cloak using a cloaking transformation. We show that nonlinear elastodynamic transformation cloaking is not possible while nonlinear elastostatic transformation cloaking may be possible for special deformations, e.g., radial deformations in a body with either a cylindrical or a spherical cavity. In the case of classical linear elastodynamics, in agreement with the previous observations in the literature, we show that the elastic constants in the cloak are not fully symmetric; they do not possess the minor symmetries. We prove that elastodynamic transformation cloaking is not possible regardless of the shape of the hole and the cloak. It is shown that the small-on-large theory, i.e., linearized elasticity with respect to a pre-stressed configuration, does not allow for transformation cloaking either. However, elastodynamic cloaking of a cylindrical hole is possible for in-plane deformations while it is not possible for anti-plane deformations. We next show that for a cavity of any shape elastodynamic transformation cloaking cannot be achieved for linear gradient elastic solids; similar to classical linear elasticity the balance of angular momentum is the obstruction to transformation cloaking. We finally prove that transformation cloaking is not possible for linear elastic generalized Cosserat solids in dimension two for any shape of the hole and the cloak. In particular, in dimension two transformation cloaking cannot be achieved in linear Cosserat elasticity. We show that transformation cloaking for a spherical cavity covered by a spherical cloak is not possible in the setting of linear elastic generalized Cosserat elasticity. We conjecture that this result is true for a cavity of any shape. It should be emphasized that in this paper we do not consider the so-called metamaterials [70, 72].

Notes

Acknowledgements

This research was supported by ARO W911NF-16-1-0064 and ARO W911NF-18-1-0003 (Dr. David Stepp).

References

  1. 1.
    Al-Attar, D., Crawford, O.: Particle relabelling transformations in elastodynamics. Geophys. J. Int. 205(1), 575–593, 2016ADSGoogle Scholar
  2. 2.
    Amirkhizi, A.V., Tehranian, A., Nemat-Nasser, S.: Stress-wave energy management through material anisotropy. Wave Motion 47(8), 519–536, 2010Google Scholar
  3. 3.
    Auffray, N., Le Quang, H., He, Q.-C.: Matrix representations for 3D strain-gradient elasticity. J. Mech. Phys. Solids 61(5), 1202–1223, 2013ADSMathSciNetGoogle Scholar
  4. 4.
    Banerjee, B.: An Introduction to Metamaterials and Waves in Composites. CRC Press, Boca Raton 2011Google Scholar
  5. 5.
    Benveniste, Y., Milton, G.W.: New exact results for the effective electric, elastic, piezoelectric and other properties of composite ellipsoid assemblages. J. Mech. Phys. Solids 51(10), 1773–1813, 2003ADSMathSciNetGoogle Scholar
  6. 6.
    Boehler, J.-P.: A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 59(4), 157–167, 1979ADSMathSciNetGoogle Scholar
  7. 7.
    Boehler, J.-P.: Applications of Tensor Functions in Solid Mechanics, vol. 292. Springer, New York 1987Google Scholar
  8. 8.
    Brun, M., Guenneau, S., Movchan, A.B.: Achieving control of in-plane elastic waves. Appl. Phys. Lett. 94(6), 061903, 2009ADSGoogle Scholar
  9. 9.
    Bryan , K., Leise , T.: Impedance imaging, inverse problems, and Harry Potter’s cloak. SIAM Rev. 52(2), 359–377, 2010MathSciNetGoogle Scholar
  10. 10.
    Capriz , G.: Continua with Microstructure, vol. 35. Springer, New York 2013Google Scholar
  11. 11.
    Chadwick , P., Vianello , M., Cowin , S.C.: A new proof that the number of linear elastic symmetries is eight. J. Mech. Phys. Solids 49(11), 2471–2492, 2001ADSMathSciNetGoogle Scholar
  12. 12.
    Chang , Z., Guo , H.-Y., Li , B., Feng , X.-Q.: Disentangling longitudinal and shear elastic waves by neo-Hookean soft devices. Appl. Phys. Lett. 106(16), 161903, 2015ADSGoogle Scholar
  13. 13.
    Chen , H., Chan , C.T.: Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91(18), 183518, 2007ADSGoogle Scholar
  14. 14.
    Coleman , B.D., Noll , W.: On the thermostatics of continuous media. Arch. Ration. Mech. Anal. 4(1), 97–128, 1959MathSciNetGoogle Scholar
  15. 15.
    Coleman , B.D., Noll , W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178, 1963MathSciNetGoogle Scholar
  16. 16.
    Coleman , B.D., Noll , W.: Material symmetry and thermostatic inequalities in finite elastic deformations. Arch. Ration. Mech. Anal. 15(2), 87–111, 1964MathSciNetGoogle Scholar
  17. 17.
    Cosserat, Eugène: François Cosserat. Théorie des corps déformables, 1909Google Scholar
  18. 18.
    Cummer , S.A., Popa , B.-I., Schurig , D., Smith , D.R., Pendry , J., Rahm , M., Starr , A.: Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett. 100(2), 024301, 2008aADSGoogle Scholar
  19. 19.
    Cummer , S.A., Rahm , M., Schurig , D.: Material parameters and vector scaling in transformation acoustics. N. J. Phys. 10(11), 115025, 2008bGoogle Scholar
  20. 20.
    De Klerk , E.: Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications, vol. 65. Springer, New York 2006Google Scholar
  21. 21.
    DiVincenzo, D.P.: Dispersive corrections to continuum elastic theory in cubic crystals. Phys. Rev. B 34(8), 5450, 1986ADSGoogle Scholar
  22. 22.
    Doyle, T.C., Ericksen, J.L.: Nonlinear elasticity. Adv. Appl. Mech. 4, 53–115, 1956MathSciNetGoogle Scholar
  23. 23.
    Efrati, E., Sharon, E., Kupferman, R.: The metric description of elasticity in residually stressed soft materials. Soft Matter 9(34), 8187–8197, 2013ADSGoogle Scholar
  24. 24.
    Ehret, A.E., Itskov, M.: Modeling of anisotropic softening phenomena: application to soft biological tissues. Int. J. Plast. 25(5), 901–919, 2009Google Scholar
  25. 25.
    Ergin, T., Stenger, N., Brenner, P., Pendry, J.B., Wegener, M.: Three-dimensional invisibility cloak at optical wavelengths. Science 328(5976), 337–339, 2010ADSGoogle Scholar
  26. 26.
    Ericksen, J.L.: Deformations possible in every compressible, isotropic, perfectly elastic material. Stud. Appl. Math. 34(1–4), 126–128, 1955MathSciNetGoogle Scholar
  27. 27.
    Ericksen, J.L., Truesdell, C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1(1), 295–323, 1957MathSciNetGoogle Scholar
  28. 28.
    Eringen, A.C.: Microcontinuum Field Theories: I. Foundations and Solids. Springer, New York 2012Google Scholar
  29. 29.
    Farhat, M., Enoch, S., Guenneau, S., Movchan, A.B.: Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys. Rev. Lett. 101(13), 134501, 2008ADSGoogle Scholar
  30. 30.
    Farhat, M., Guenneau, S., Enoch, S.: Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103(2), 024301, 2009aADSGoogle Scholar
  31. 31.
    Farhat, M., Guenneau, S., Enoch, S., Movchan, A.B.: Cloaking bending waves propagating in thin elastic plates. Phys. Rev. B 79(3), 033102, 2009bADSGoogle Scholar
  32. 32.
    Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 43(2), 81–108, 1996MathSciNetGoogle Scholar
  33. 33.
    Golgoon, A., Yavari, A.: On the stress field of a nonlinear elastic solid torus with a toroidal inclusion. J. Elast. 128(1), 115–145, 2017MathSciNetGoogle Scholar
  34. 34.
    Golgoon, A., Yavari, A.: Line and point defects in nonlinear anisotropic solids. Zeitschrift für angewandte Mathematik und Physik 69(3), 81, 2018aADSMathSciNetGoogle Scholar
  35. 35.
    Golgoon, A., Yavari, A.: Nonlinear elastic inclusions in anisotropic solids. J. Elast. 130(2), 239–269, 2018bMathSciNetGoogle Scholar
  36. 36.
    Golgoon, A., Sadik, S., Yavari, A.: Circumferentially-symmetric finite eigenstrains in incompressible isotropic nonlinear elastic wedges. Int. J. Non-Linear Mech. 84, 116–129, 2016ADSGoogle Scholar
  37. 37.
    Goriely, A.: The Mathematics and Mechanics of Biological Growth, vol. 45. Springer, New York 2017Google Scholar
  38. 38.
    Green, A.E., Rivlin, R.S., Shield, R.T.: General theory of small elastic deformations superposed on finite elastic deformations. Proc. R. Soc. Lond. A 211(1104), 128–154, 1952ADSMathSciNetGoogle Scholar
  39. 39.
    Green, A.E., Rivlin, R.S.: On Cauchy’s equations of motion. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 15(3), 290–292, 1964ADSMathSciNetGoogle Scholar
  40. 40.
    Greenleaf, A., Lassas, M., Uhlmann, G.: On nonuniqueness for Calderón’s inverse problem. Math. Res. Lett. 10, 2003aGoogle Scholar
  41. 41.
    Greenleaf, A., Lassas, M., Uhlmann, G.: Anisotropic conductivities that cannot be detected by EIT. Physiol. Meas. 24(2), 413, 2003bGoogle Scholar
  42. 42.
    Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Full-wave invisibility of active devices at all frequencies. Commun. Math. Phys. 275(3), 749–789, 2007ADSMathSciNetGoogle Scholar
  43. 43.
    Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Cloaking devices, electromagnetic wormholes, and transformation optics. SIAM Rev. 51(1), 3–33, 2009aADSMathSciNetGoogle Scholar
  44. 44.
    Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Invisibility and inverse problems. Bull. Am. Math. Soc. 46(1), 55–97, 2009bMathSciNetGoogle Scholar
  45. 45.
    Guenneau, S., Puvirajesinghe, T.M.: Fick’s second law transformed: one path to cloaking in mass diffusion. J. R. Soc. Interface 10(83), 20130106, 2013Google Scholar
  46. 46.
    Guenneau, S., Amra, C., Veynante, D.: Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express 20(7), 8207–8218, 2012ADSGoogle Scholar
  47. 47.
    Gurney, C.: An Analysis of the Stresses in a Flat Plate with a Reinforced Circular Hole Under Edge Forces. Reports and Memoranda. H.M, Stationery Office, 1938Google Scholar
  48. 48.
    Hashin, Z.: The elastic moduli of heterogeneous materials. J. Appl. Mech. 29(1), 143–150, 1962ADSMathSciNetGoogle Scholar
  49. 49.
    Hashin, Z.: Large isotropic elastic deformation of composites and porous media. Int. J. Solids Struct. 21(7), 711–720, 1985Google Scholar
  50. 50.
    Hashin, Z., Rosen, B.W.: The elastic moduli of fiber-reinforced materials. J. Appl. Mech. 31(2), 223–232, 1964ADSGoogle Scholar
  51. 51.
    Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140, 1963ADSMathSciNetGoogle Scholar
  52. 52.
    Hughes, T.J.R., Marsden, J.E.: Some applications of geometry is continuum mechanics. Rep. Math. Phys. 12(1), 35–44, 1977ADSGoogle Scholar
  53. 53.
    Kadic, M., Bückmann, T., Schittny, R., Wegener, M.: Metamaterials beyond electromagnetism. Rep. Prog. Phys. 76(12), 126501, 2013ADSGoogle Scholar
  54. 54.
    Kadic, M., Bückmann, T., Schittny, R., Wegener, M.: Experiments on cloaking in optics, thermodynamics and mechanics. Philos. Trans. A 373(2049), 20140357, 2015ADSGoogle Scholar
  55. 55.
    Khlopotin, A., Olsson, P., Larsson, F.: Transformational cloaking from seismic surface waves by micropolar metamaterials with finite couple stiffness. Wave Motion 58, 53–67, 2015MathSciNetGoogle Scholar
  56. 56.
    Kohn, R.V., Shen, H., Vogelius, M.S., Weinstein, M.I.: Cloaking via change of variables in electric impedance tomography. Inverse Probl. 24(1), 015016, 2008ADSMathSciNetGoogle Scholar
  57. 57.
    Lang, H.A.: The affine transformation for orthotropic plane-stress and plane-strain problems. J. Appl. Mech. 23(1), 1–6, 1956MathSciNetGoogle Scholar
  58. 58.
    Lee, J.M.: Riemannian Manifold An Introduction to Curves. Springer, New York 1997Google Scholar
  59. 59.
    Leonhardt, U.: Optical conformal mapping. Science 312(5781), 1777–1780, 2006ADSMathSciNetGoogle Scholar
  60. 60.
    Leonhardt, U., Philbin, T.: Geometry and Light: The Science of Invisibility. Courier Corporation, New York, 2012Google Scholar
  61. 61.
    Liu, I.: On representations of anisotropic invariants. Int. J. Eng. Sci. 20(10), 1099–1109, 1982MathSciNetGoogle Scholar
  62. 62.
    Liu, R., Ji, C., Mock, J.J., Chin, J.Y., Cui, T.J., Smith, D.R.: Broadband ground-plane cloak. Science 323(5912), 366–369, 2009ADSGoogle Scholar
  63. 63.
    Lodge, A.S.: A new theorem in the classical theory of elasticity. Nature 169, 926–927, 1952ADSMathSciNetGoogle Scholar
  64. 64.
    Lodge, A.S.: The transformation to isotropic form of the equilibrium equations for a class of anisotropic elastic solids. Quart. J. Mech. Appl. Math. 8(2), 211–225, 1955MathSciNetGoogle Scholar
  65. 65.
    Jia, L., Papadopoulos, P.: A covariant constitutive description of anisotropic non-linear elasticity. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 51(2), 204–217, 2000ADSMathSciNetGoogle Scholar
  66. 66.
    Mansfield, E.H.: Neutral holes in plane sheet-reinforced holes which are elastically equivalent to the uncut sheet. Quart. J. Mech. Appl. Math. 6(3), 370, 1953MathSciNetGoogle Scholar
  67. 67.
    Maranganti, R., Sharma, P.: A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and their relevance for nanotechnologies. J. Mech. Phys. Solids 55(9), 1823–1852, 2007ADSGoogle Scholar
  68. 68.
    Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover, New York 1983Google Scholar
  69. 69.
    Mazzucato, A.L., Rachele, L.V.: Partial uniqueness and obstruction to uniqueness in inverse problems for anisotropic elastic media. J. Elast. 83(3), 205–245, 2006MathSciNetGoogle Scholar
  70. 70.
    Milton, G.W.: New metamaterials with macroscopic behavior outside that of continuum elastodynamics. N. J. Phys. 9(10), 359, 2007Google Scholar
  71. 71.
    Milton, G.W., Cherkaev, A.V.: Which elasticity tensors are realizable? J. Eng. Mater. Technol. 117(4), 483–493, 1995Google Scholar
  72. 72.
    Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. A 463(2079), 855–880, 2007ADSMathSciNetGoogle Scholar
  73. 73.
    Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. N. J. Phys. 8(10), 248, 2006Google Scholar
  74. 74.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration Mech. Anal. 16(1), 51–78, 1964MathSciNetGoogle Scholar
  75. 75.
    Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration Mech. Anal. 11(1), 415–448, 1962MathSciNetGoogle Scholar
  76. 76.
    Nishikawa, S.: Variational Problems in Geometry. American Mathematical Society, New York 2002Google Scholar
  77. 77.
    Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration Mech. Anal. 2(1), 197–226, 1958MathSciNetGoogle Scholar
  78. 78.
    Norris, A.N.: Acoustic cloaking theory. Proc. R. Soc. Lond. A 464(2097), 2411–2434, 2008ADSMathSciNetGoogle Scholar
  79. 79.
    Norris, A.N., Parnell, W.J.: Hyperelastic cloaking theory: transformation elasticity with pre-stressed solids. Proc. R. Soc. A 468(2146), 2881–2903, 2012ADSMathSciNetGoogle Scholar
  80. 80.
    Norris, A.N., Shuvalov, A.L.: Elastic cloaking theory. Wave Motion 48(6), 525–538, 2011MathSciNetGoogle Scholar
  81. 81.
    Ogden, R.W.: Non-linear Elastic Deformations. Courier Corporation, New York 1997Google Scholar
  82. 82.
    Olive, M., Auffray, N.: Symmetry classes for even-order tensors. Math. Mech. Complex Syst. 1(2), 177–210, 2013Google Scholar
  83. 83.
    Olsson, P., Wall, D.J.N.: Partial elastodynamic cloaking by means of fiber-reinforced composites. Inverse Probl. 27(4), 045010, 2011ADSMathSciNetGoogle Scholar
  84. 84.
    Olver, P.J.: Canonical elastic moduli. J. Elast. 19(3), 189–212, 1988MathSciNetGoogle Scholar
  85. 85.
    Ostrosablin, N.I.: Affine transformations of the equations of the linear theory of elasticity. J. Appl. Mech. Tech. Phys. 47(4), 564–572, 2006ADSMathSciNetGoogle Scholar
  86. 86.
    Ozakin, A., Yavari, A.: A geometric theory of thermal stresses. J. Math. Phys. 51, 032902, 2010ADSMathSciNetGoogle Scholar
  87. 87.
    Parnell, W.J.: Nonlinear pre-stress for cloaking from antiplane elastic waves. Proc. R. Soc. A 468(2138), 563–580, 2012ADSMathSciNetGoogle Scholar
  88. 88.
    Parnell, W.J., Norris, A.N., Shearer, T.: Employing pre-stress to generate finite cloaks for antiplane elastic waves. Appl. Phys. Lett. 100(17), 171907, 2012ADSGoogle Scholar
  89. 89.
    Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312(5781), 1780–1782, 2006ADSMathSciNetGoogle Scholar
  90. 90.
    Post, E.J.: Formal Structure of Electromagnetics: General Covariance and Electromagnetics. Courier Corporation, New York 1997Google Scholar
  91. 91.
    Reissner, H., Morduchow, M.: Reinforced circular cutouts in plane sheets. Technical Report Technical Note No. 1852, 1949Google Scholar
  92. 92.
    Rivlin, R.S.: Large elastic deformations of isotropic materials. I. Fundamental concepts. Philos. Trans. R. Soc. Lond. Ser. A 240, 459–490, 1948ADSMathSciNetGoogle Scholar
  93. 93.
    Rivlin, R.S.: Large elastic deformations of isotropic materials. II. Some uniqueness theorems for pure, homogeneous deformation. Philos. Trans. R. Soc. Lond. A 240(822), 491–508, 1948aADSMathSciNetGoogle Scholar
  94. 94.
    Rivlin, R.S.: Large elastic deformations of isotropic materials. III. Some simple problems in cylindrical polar co-ordinates. Philos. Trans. R. Soc. Lond. A 240(823), 509–525, 1948bADSGoogle Scholar
  95. 95.
    Rivlin, R.S.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A 241(835), 379–397, 1948cADSMathSciNetGoogle Scholar
  96. 96.
    Rivlin, R.S.: Large elastic deformations of isotropic materials. V. The problem of flexure. Philos. Trans. R. Soc. Lond. A 195(1043), 463–473, 1949aMathSciNetGoogle Scholar
  97. 97.
    Rivlin, R.S.: Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and flexure. Philos. Trans. R. Soc. Lond. A 242(845), 173–195, 1949bADSMathSciNetGoogle Scholar
  98. 98.
    Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. A 243(865), 251–288, 1951ADSGoogle Scholar
  99. 99.
    Sadik, S., Yavari, A.: Geometric nonlinear thermoelasticity and the time evolution of thermal stresses. Math. Mech. Solids 1, 42, 2015Google Scholar
  100. 100.
    Sadik, S., Yavari, A.: Small-on-large geometric anelasticity. Proc. R. Soc. A 472(2195), 20160659, 2016ADSMathSciNetGoogle Scholar
  101. 101.
    Sadik, S., Angoshtari, A., Goriely, A., Yavari, A.: A geometric theory of nonlinear morphoelastic shells. J. Nonlinear Sci. 26, 929–978, 2016ADSMathSciNetGoogle Scholar
  102. 102.
    Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980, 2006ADSGoogle Scholar
  103. 103.
    Simo, J.C., Marsden, J.E.: Stress tensors, Riemannian metrics and the alternative descriptions in elasticity. In: Trends and Applications of Pure Mathematics to Mechanics, pp. 369–383. Springer, 1984Google Scholar
  104. 104.
    Simo, J.C., Marsden, J.E., Krishnaprasad, P.S.: The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods, and plates. Arch. Ration. Mech. Anal. 104(2), 125–183, 1988MathSciNetGoogle Scholar
  105. 105.
    Sklan, S.R., Pak, R.Y.S., Li, B.: Seismic invisibility: elastic wave cloaking via symmetrized transformation media. N. J. Phys. 20(6), 063013, 2018Google Scholar
  106. 106.
    Sozio, F., Yavari, A.: Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies. J. Mech. Phys. Solids 98, 12–48, 2017ADSMathSciNetGoogle Scholar
  107. 107.
    Sozio, F., Yavari, A.: Nonlinear mechanics of accretion. J. Nonlinear Sci. 1–51, 2019Google Scholar
  108. 108.
    Spencer, A.J.M.: The Formulation of Constitutive Equation for Anisotropic Solids, pp. 3–26. Springer, Dordrecht 1982Google Scholar
  109. 109.
    Spencer, A.J.M.: Part III. Theory of invariants. Contin. Phys. 1, 239–353, 1971Google Scholar
  110. 110.
    Steigmann, D.J.: On the frame invariance of linear elasticity theory. Zeitschrift für Angewandte Mathematik und Physik 58(1), 121–136, 2007ADSMathSciNetGoogle Scholar
  111. 111.
    Stojanović, R.: Recent Developments in the Theory of Polar Continua. Springer, New York 1970Google Scholar
  112. 112.
    Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414, 1962MathSciNetGoogle Scholar
  113. 113.
    Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112, 1964MathSciNetGoogle Scholar
  114. 114.
    Truesdell, C.: The physical components of vectors and tensors. Zeitschrift für Angewandte Mathematik und Mechanik 33(10–11), 345–356, 1953ADSMathSciNetGoogle Scholar
  115. 115.
    Yano, K.L.: The Theory of Lie Derivatives and its Applications. North-Holland, Amsterdam, 1957Google Scholar
  116. 116.
    Yavari, A.: A geometric theory of growth mechanics. J. Nonlinear Sci. 20(6), 781–830, 2010ADSMathSciNetGoogle Scholar
  117. 117.
    Yavari, A., Goriely, A.: Riemann–Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 205(1), 59–118, 2012aMathSciNetGoogle Scholar
  118. 118.
    Yavari, A., Goriely, A.: Weyl geometry and the nonlinear mechanics of distributed point defects. Proc. R. Soc. A 468(2148), 3902–3922, 2012bADSMathSciNetGoogle Scholar
  119. 119.
    Yavari, A., Goriely, A.: The geometry of discombinations and its applications to semi-inverse problems in anelasticity. Proc. R. Soc. A 470(2169), 20140403, 2014ADSMathSciNetGoogle Scholar
  120. 120.
    Yavari, A., Goriely, A.: The anelastic Ericksen problem: universal eigenstrains and deformations in compressible isotropic elastic solids. Proc. R. Soc. A 472(2196), 20160690, 2016ADSMathSciNetGoogle Scholar
  121. 121.
    Yavari, A.: On geometric discretization of elasticity. J. Math. Phys. 49(2), 022901, 2008ADSMathSciNetGoogle Scholar
  122. 122.
    Yavari, A.: Compatibility equations of nonlinear elasticity for non-simply-connected bodies. Arch. Ration. Mech. Anal. 209(1), 237–253, 2013MathSciNetGoogle Scholar
  123. 123.
    Yavari, A., Goriely, A.: Riemann–Cartan geometry of nonlinear disclination mechanics. Math. Mech. Solids 18(1), 91–102, 2012cMathSciNetGoogle Scholar
  124. 124.
    Yavari, A., Marsden, J.E.: Covariant balance laws in continua with microstructure. Rep. Math. Phys. 63(1), 1–42, 2009aADSMathSciNetGoogle Scholar
  125. 125.
    Yavari, A., Marsden, J.E.: Energy balance invariance for interacting particle systems. Zeitschrift für Angewandte Mathematik und Physik 60(4), 723–738, 2009bADSMathSciNetGoogle Scholar
  126. 126.
    Yavari, A., Ozakin, A.: Covariance in linearized elasticity. Zeitschrift für Angewandte Mathematik und Physik 59(6), 1081–1110, 2008ADSMathSciNetGoogle Scholar
  127. 127.
    Yavari, A., Marsden, J.E., Ortiz, M.: On spatial and material covariant balance laws in elasticity. J. Math. Phys. 47(4), 042903, 2006ADSMathSciNetGoogle Scholar
  128. 128.
    Zhang, J.M., Rychlewski, J.: Structural tensors for anisotropic solids. Arch. Mech. 42(3), 267–277, 1990MathSciNetGoogle Scholar
  129. 129.
    Zhang, S., Genov, D.A., Sun, C., Zhang, X.: Cloaking of matter waves. Phys. Rev. Lett. 100(12), 123002, 2008ADSGoogle Scholar
  130. 130.
    Zheng, Q.S.: Theory of representations for tensor functions. Appl. Mech. Rev. 47(11), 545–587, 1994ADSGoogle Scholar
  131. 131.
    Zheng, Q.-S., Spencer, A.J.M.: Tensors which characterize anisotropies. Int. J. Eng. Sci. 31(5), 679–693, 1993aMathSciNetGoogle Scholar
  132. 132.
    Zheng, Q.-S., Spencer, A.J.M.: On the canonical representations for Kronecker powers of orthogonal tensors with application to material symmetry problems. Int. J. Eng. Sci. 31(4), 617–635, 1993bMathSciNetGoogle Scholar
  133. 133.
    Zhou, X., Gengkai, H., Tianjian, L.: Elastic wave transparency of a solid sphere coated with metamaterials. Phys. Rev. B 77(2), 024101, 2008ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Civil and Environmental Engineering & The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations