Skip to main content
Log in

Criticality of a Randomly-Driven Front

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Consider an advancing ‘front’ \({R(t) \in \mathbb{Z}_{\geqq 0}}\) and particles performing independent continuous time random walks on \({ (R(t), \infty) \cap \mathbb{Z}}\). Starting at \({R(0)=0}\), whenever a particle attempts to jump into \({R(t)}\) the latter instantaneously moves \({k \ge 1}\) steps to the right, absorbing all particles along its path. We take k to be the minimal random integer such that exactly k particles are absorbed by the move of R, and view the particle system as a discrete version of the Stefan problem

$$\begin{aligned}&\partial_{t} u_{*}(t,\xi) = \frac{1}{2} \partial^{2}_{\xi} u_{*}(t,\xi), \quad \xi >r(t), \\ &u_{*}(t,r(t))=0, \\ &\frac{{\rm d} }{{\rm d}t}r(t) = \frac{1}{2} \partial_\xi u_{*}(t,r(t)), \\ &t \mapsto r(t)\ \hbox{non-decreasing}, \quad r(0):=0.\end{aligned} $$

For a constant initial particle density \({u_{*}(0,\xi)=\rho {\bf 1}_{\{\xi > 0\}}}\), at \({\rho < 1}\) the particle system and the PDE exhibit the same diffusive behavior at large time, whereas at \({\rho \ge 1}\) the PDE explodes instantaneously. Focusing on the critical density \({ \rho=1 }\), we analyze the large time behavior of the front R(t) for the particle system, and obtain both the scaling exponent of R(t) and an explicit description of its random scaling limit. Our result unveils a rarely seen phenomenon where the macroscopic scaling exponent is sensitive to the amount of initial local fluctuations. Further, the scaling limit demonstrates an interesting oscillation between instantaneous super- and sub-critical phases. Our method is based on a novel monotonicity as well as PDE-type estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, O., Machado, F., Popov, S.: Phase transition for the frog model. Electron. J. Probab. 7, 1–21 (2002)

  2. Alves, O., Machado, F., Popov, S.: The shape theorem for the frog model. Ann. Appl. Probab. 12(2), 533–546 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bérard, J., Ramírez, A.: Large deviations of the front in a one-dimensional model of \( X +{Y} \rightarrow 2X \). Ann. Probab. 38, 955–1018 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bérard, J., Ramírez, A.: Fluctuations of the front in a one-dimensional model for the spread of an infection. Ann. Probab. 44(4), 2770–2816 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carrillo, J.A., González, M.d.M., Gualdani, M.P., Schonbek, M.E.: Classical solutions for a nonlinear Fokker–Planck equation arising in computational neuroscience. Commun. Partial Differ. Equ. 38(3), 385–409, 2013

  6. Comets, F., Quastel, J., Ramírez, A.: Fluctuations of the front in a stochastic combustion model. Annales de l'Institut Henri Poincare (B) Probability and Statistics, Vol. 43, Elsevier, Amesterdam, 147–162, 2007

  7. Comets, F., Quastel, J., Ramírez, A.: Fluctuations of the front in a one dimensional model of \( X +{Y} \rightarrow 2X \). Trans. Am. Math. Soc. 361(11), 6165–6189 (2009)

    Article  MATH  Google Scholar 

  8. Delarue, F., Inglis, J., Rubenthaler, S., Tanré, E.: Global solvability of a networked integrate-and-fire model of McKean-Vlasov type. Ann. Appl. Probab. 25(4), 2096–2133 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dembo, A., Tsai, L.-C.: Weakly asymmetric non-simple exclusion process and the Kardar-Parisi-Zhang equation. Commun. Math. Phys. 341(1), 219–261 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Fasano, A., Primicerio, M.: New results on some classical parabolic free-boundary problems. Q. Appl. Math. 38(4), 439–460 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fasano, A., Primicerio, M., Hadeler, K.: A critical case for the solvability of Stefan-like problems. Math. Methods Appl. Sci. 5(1), 84–96 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Fasano, A., Primicerio, M., Howison, S., Ockendon, J.: On the singularities of one-dimensional Stefan problems with supercooling. Mathematical Models for Phase Change Problems, Vol. 88 (Ed. Rodrigues J.F.). Int. Ser. Numerical Mathematics, 215–225, 1989

  13. Fasano, A., Primicerio, M., Howison, S., Ockendon, J.: Some remarks on the regularization of supercooled one-phase Stefan problems in one dimension. Q. Appl. Math. 48(1), 153–168 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedman, A.: Analyticity of the free boundary for the Stefan problem. Arch. Ration. Mech. Anal. 61(2), 97–125 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goemans, M.: Lecture notes: Chernoff bounds, and some applications. http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf, 2015

  16. Herrero, M.A., Velázquez, J.J.: Singularity formation in the one-dimensional supercooled Stefan problem. Eur. J. Appl. Math. 7(2), 119–150 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kesten, H., Ramırez, A., Sidoravicius, V.: Asymptotic shape and propagation of fronts for growth models in dynamic random environment. Probability in Complex Physical Systems, (Eds. Deuschel J.-D., Gentz B., König W., von Renesse M., Scheutzow M. and Schmock U.) Springer, Berlin, 195–223, 2012

  18. Kesten, H., Sidoravicius, V.: Positive recurrence of a one-dimensional variant of diffusion limited aggregation. In and Out of Equilibrium 2, (Eds. Sidoravicius V. and Vares M.E.) Springer, Berlin, 429–461, 2008

  19. Kesten, H., Sidoravicius, V.: A problem in one-dimensional diffusion-limited aggregation (DLA) and positive recurrence of Markov chains. Ann. Probab. 36, 1838–1879 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kesten, H., Sidoravicius, V.: A shape theorem for the spread of an infection. Ann. Math. 167, 701–766 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nadtochiy, S., Shkolnikov, M.: Particle systems with singular interaction through hitting times: application in systemic risk modeling. Ann. Appl. Probab. 29(1), 89–129 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Richardson, D.: Random growth in a tessellation. Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 74, Cambridge Univ Press, 515–528, 1973

  23. Ramírez, A., Sidoravicius, V.: Asymptotic behavior of a stochastic combustion growth process. J. Eur. Math. Soc. 6(3), 293–334 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sly, A.: On one-dimensional multi-particle diffusion limited aggregation. arXiv:1609.08107, 2016

  25. Sidoravicius, V., Rath, B.: One-dimensional multi-particle DLA—a PDE approach. arXiv:1709.00484, 2017

  26. Sidoravicius, V., Stauffer, A.: Multi-particle diffusion limited aggregation. arXiv:1603.03218, 2016

  27. Whitt, W.: Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We thank Vladas Sidoravicius for introducing one of us (A.D.) to questions about critical behavior of the 1d-MDLA. Dembo’s research was partially supported by the NSF Grant DMS-1613091, whereas Tsai’s research was partially supported by a Graduate Fellowship fromthe Kavli Institute for Theoretical Physic (KITP) and by a Junior Fellow award from the Simons Foundation. Some of this work was done during the KITP program “New approaches to non-equilibrium and random systems: KPZ integrability, universality, applications and experiments” supported in part by the NSF Grant PHY-1125915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Cheng Tsai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Figalli

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dembo, A., Tsai, LC. Criticality of a Randomly-Driven Front. Arch Rational Mech Anal 233, 643–699 (2019). https://doi.org/10.1007/s00205-019-01365-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01365-w

Navigation