Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Archive for Rational Mechanics and Analysis
  3. Article
Well-Posedness of Nonlinear Diffusion Equations with Nonlinear, Conservative Noise
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Absolute Continuity of Solutions to Reaction-Diffusion Equations with Multiplicative Noise

06 April 2021

Carlo Marinelli & Lluís Quer-Sardanyons

Nonlocal doubly nonlinear diffusion problems with nonlinear boundary conditions

08 March 2023

Marcos Solera & Julián Toledo

On the Continuity of Solutions of the Equations of a Porous Medium and the Fast Diffusion with Weighted and Singular Lower-Order Terms

26 July 2021

Yevhen S. Zozulia

Existence of Weak Solutions for a General Porous Medium Equation with Nonlocal Pressure

09 February 2019

Diana Stan, Félix del Teso & Juan Luis Vázquez

Porous Medium Equation with a Drift: Free Boundary Regularity

21 August 2021

Inwon Kim & Yuming Paul Zhang

Advection Diffusion Equations with Sobolev Velocity Field

23 February 2021

Elia Brué & Quoc-Hung Nguyen

Regularity theory for singular nonlocal diffusion equations

21 August 2018

Arturo de Pablo, Fernando Quirós & Ana Rodríguez

Well-posedness for a stochastic 2D Euler equation with transport noise

29 January 2022

Oana Lang & Dan Crisan

Wellposedness and Convergence of Solutions to a Class of Forced Non-diffusive Equations with Applications

09 September 2019

Susan Friedlander & Anthony Suen

Download PDF
  • Open Access
  • Published: 01 February 2019

Well-Posedness of Nonlinear Diffusion Equations with Nonlinear, Conservative Noise

  • Benjamin Fehrman1,2 &
  • Benjamin Gess  ORCID: orcid.org/0000-0003-3626-67002,3 

Archive for Rational Mechanics and Analysis volume 233, pages 249–322 (2019)Cite this article

  • 825 Accesses

  • 27 Citations

  • Metrics details

Abstract

We prove the pathwise well-posedness of stochastic porous media and fast diffusion equations driven by nonlinear, conservative noise. As a consequence, the generation of a random dynamical system is obtained. This extends results of the second author and Souganidis, who considered analogous spatially homogeneous and first-order equations, and earlier works of Lions, Perthame, and Souganidis.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Aubin, J.-P.: Un théorème de compacité. C. R. Acad. Sci. Paris 256, 5042–5044 (1963)

    MathSciNet  MATH  Google Scholar 

  2. Barbu, V., Bogachev, V.I., Da Prato, G., Röckner, M.: Weak solutions to the stochastic porous media equation via Kolmogorov equations: the degenerate case. J. Funct. Anal. 237(1), 54–75 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbu, V., Da Prato, G., Röckner, M.: Existence and uniqueness of nonnegative solutions to the stochastic porous media equation. Indiana Univ. Math. J. 57(1), 187–211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbu, V., Da Prato, G., Röckner, M.: Some results on stochastic porous media equations. Boll. Unione Mat. Ital. (9) 1(1), 1–15 2008

  5. Barbu, V., Da Prato, G., Röckner, M.: Existence of strong solutions for stochastic porous media equation under general monotonicity conditions. Ann. Probab. 37(2), 428–452 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbu, V., Da Prato, G., Röckner, M.: Stochastic Porous Media Equations, Volume 2163 of Lecture Notes in Mathematics. Springer, Cham, 2016

  7. Barbu, V., Röckner, M.: On a random scaled porous media equation. J. Diff. Equ. 251(9), 2494–2514 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Barbu, V., Röckner, M., Russo, F.: Stochastic porous media equations in \({\mathbb{R}^d}\). J. Math. Pures Appl. (9) 103(4), 1024–1052 2015

  9. Blanchard, D., Murat, F.: Renormalised solutions of nonlinear parabolic problems with \({L^1}\) data: existence and uniqueness. Proc. Roy. Soc. Edinburgh Sect. A 127(6), 1137–1152 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blanchard, D., Redwane, H.: Solutions renormalisées d'équations paraboliques à deux non linéarités. C. R. Acad. Sci. Paris Sér. I Math. 319(8), 831–835 1994

  11. Blanchard, D., Redwane, H.: Renormalized solutions for a class of nonlinear evolution problems. J. Math. Pures Appl. (9) 77(2), 117–151 1998

  12. Chen, G.-Q., Perthame, B.: Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(4), 645–668 2003

  13. Crisan, D., Diehl, J., Friz, P.K., Oberhauser, H.: Robust filtering: correlated noise and multidimensional observation. Ann. Appl. Probab. 23(5), 2139–2160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Da Prato, G., Röckner, M.: Weak solutions to stochastic porous media equations. J. Evol. Equ. 4(2), 249–271 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Da Prato, G., Röckner, M., Rozovskii, B.L., Wang, F.-Y.: Strong solutions of stochastic generalized porous media equations: existence, uniqueness, and ergodicity. Commun. Partial Differ. Equ. 31(1–3), 277–291 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dean, D.S.: Langevin equation for the density of a system of interacting langevin processes. J. Phys. A Math. Gen. 29(24), L613 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  17. DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. (2) 130(2), 321–366 1989

  18. Dirr, N., Stamatakis, M., Zimmer, J.: Entropic and gradient flow formulations for nonlinear diffusion. J. Math. Phys. 57(8), 081505 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Donev, A., Fai, T.G., Vanden-Eijnden, E.: A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to fick's law. J. Stat. Mech. Theory Exp. P04004 2014

  20. Ebmeyer, C.: Regularity in Sobolev spaces for the fast diffusion and the porous medium equation. J. Math. Anal. Appl. 307(1), 134–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fehrman, B., Gess, B.: Well-posedness of stochastic porous media equations with nonlinear, conservative noise. arXiv e-prints, Version 1, December 2017

  22. Ferrari, P.A., Presutti, E., Vares, M.E.: Local equilibrium for a one-dimensional zero range process. Stoch. Process. Appl. 26(1), 31–45 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ferrari, P.A., Presutti, E., Vares, M.E.: Nonequilibrium fluctuations for a zero range process. Ann. Inst. H. Poincaré Probab. Stat. 24(2), 237–268 (1988)

    MathSciNet  MATH  Google Scholar 

  24. Flandoli, F.: Regularity Theory and Stochastic Flows for Parabolic SPDEs, Volume 9 of Stochastics Monographs. Gordon and Breach Science Publishers, Yverdon, 1995

  25. Friz, P.K., Hairer, M.: A Course on Rough Paths. Universitext. Springer, Cham, 2014. With an Introduction to Regularity Structures

  26. Friz, P.K., Victoir, N.B.: Multidimensional Stochastic Processes as Rough Paths, Volume 120 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010. Theory and Applications

  27. Gess, B.: Strong solutions for stochastic partial differential equations of gradient type. J. Funct. Anal. 263(8), 2355–2383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gess, B.: Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise. Ann. Probab. 42(2), 818–864 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gess, B., Souganidis, P.E.: Scalar conservation laws with multiple rough fluxes. Commun. Math. Sci. 13(6), 1569–1597 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gess, B., Souganidis, P.E.: Stochastic non-isotropic degenerate parabolic-hyperbolic equations. Stoch. Process. Appl. 127(9), 2961–3004 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gess, B., Souganidis, P.E.: Long-time behavior, invariant measures, and regularizing effects for stochastic scalar conservation laws. Commun. Pure Appl. Math. 70(8), 1562–1597 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Grün, G., Mecke, K., Rauscher, M.: Thin-film flow influenced by thermal noise. J. Stat. Phys. 122(6), 1261–1291 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Kawasaki, K.: Microscopic analyses of the dynamical density functional equation of dense fluids. J. Stat. Phys. 93(3–4), 527–546 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Kim, J.U.: On the stochastic porous medium equation. J. Differ. Equ. 220(1), 163–194 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Krylov, N.V., Rozovskiĭ, B.L.: The Cauchy problem for linear stochastic partial differential equations. Izv. Akad. Nauk SSSR Ser. Mat. 41(6), 1329–1347, 1448 1977

  36. Krylov, N.V., Rozovskiĭ, B.L.: Stochastic evolution equations [mr0570795]. In: Stochastic Differential Equations: Theory and Applications, Volume 2 of Interdisciplinary Mathematical Sciences, pp. 1–69.World Scientific Publishing, Hackensack, NJ 2007

  37. Ladyzenskaja, O., Solonnikov, V., Uraltceva, N.: Linear and Quasilinear Equations of Parabolic Type. Izdat. ``Nauka'', Moscow, 1967

  38. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 2006

  39. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 2006

  40. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  Google Scholar 

  41. Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non linéaires. Dunod; Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  42. Lions, P.-L., Perthame, B., Souganidis, P.E.: Scalar conservation laws with rough (stochastic) fluxes. Stoch. Partial Differ. Equ. Anal. Comput. 1(4), 664–686 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Lions, P.-L., Perthame, B., Souganidis, P.E.: Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case. Stoch. Partial Differ. Equ. Anal. Comput. 2(4), 517–538 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 326(9), 1085–1092 1998

  45. Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic partial differential equations: non-smooth equations and applications. C. R. Acad. Sci. Paris Sér. I Math. 327(8), 735–741 1998

  46. Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic pde with semilinear stochastic dependence. C. R. Acad. Sci. Paris Sér. I Math. 331(8), 617–624 2000

  47. Lions, P.-L., Souganidis, P.E.: Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 331(10), 783–790 2000

  48. Lions, P.-L., Souganidis, P.E.: Viscosity solutions of fully nonlinear stochastic partial differential equations. Sūrikaisekikenkyūsho Kōkyūroku (1287), 58–65 2002 [Viscosity solutions of differential equations and related topics (Japanese) (Kyoto, 2001)]

  49. Lyons, T.: On the nonexistence of path integrals. Proc. R. Soc. Lond. Ser. A 432(1885), 281–290 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Lyons, T.: Differential equations driven by rough signals. Rev. Mat. Iberoam. 14(2), 215–310 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lyons, T., Qian, Z.: System Control and Rough Paths. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2002 (Oxford Science Publications)

  52. Lyons, T.J.: Differential equations driven by rough signals. Rev. Mat. Iberoam. 14(2), 215–310 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. Marconi, U.M.B., Tarazona, P.: Dynamic density functional theory of fluids. J. Chem. Phys. 110(16), 8032–8044 (1999)

    Article  ADS  Google Scholar 

  54. Mohammed, S.-E.A., Zhang, T., Zhao, H.: The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations. Mem. Am. Math. Soc. 196(917), vi+105 2008

  55. Pardoux, É.: Sur des équations aux dérivées partielles stochastiques monotones. C. R. Acad. Sci. Paris Sér. A-B 275, A101–A103 1972

  56. Perthame, B.: Kinetic Formulation of Conservation Laws, Volume 21 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2002

  57. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations, Volume 1905 of Lecture Notes in Mathematics. Springer, Berlin, 2007

  58. Ren, J., Röckner, M., Wang, F.-Y.: Stochastic generalized porous media and fast diffusion equations. J. Differ. Equ. 238(1), 118–152 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Röckner, M., Wang, F.-Y.: Non-monotone stochastic generalized porous media equations. J. Differ. Equ. 245(12), 3898–3935 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Rozovskiĭ, B.L.: Stochastic Evolution Systems, Volume 35 ofMathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1990 (Linear theory and applications to nonlinear filtering, Translated fromthe Russian byA.Yarkho)

  61. Simon, J.: Compact sets in the space \({L^{p}(0, T;B)}\). Ann. Mat. Pura Appl. 4(146), 65–96 (1987)

    MATH  Google Scholar 

Download references

Acknowledgements

Open access funding provided by Max Planck Society. We would like to thank the referees for their careful reports. Their comments were of substantial benefit to the paper. The first author was supported by the National Science Foundation Mathematical Sciences Postdoctoral Research Fellowship under Grant No. 1502731. The second author acknowledges financial support by the the Max Planck Society through the Max Planck Research Group “Stochastic partial differential equations” and by the DFG through the CRC “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their applications”.

Author information

Authors and Affiliations

  1. Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK

    Benjamin Fehrman

  2. Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103, Leipzig, Germany

    Benjamin Fehrman & Benjamin Gess

  3. Fakultät für Mathematik, Universität Bielefeld, Universitätstr. 25, 33615, Bielefeld, Germany

    Benjamin Gess

Authors
  1. Benjamin Fehrman
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Benjamin Gess
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Benjamin Gess.

Additional information

Communicated by P.-L. Lions

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fehrman, B., Gess, B. Well-Posedness of Nonlinear Diffusion Equations with Nonlinear, Conservative Noise. Arch Rational Mech Anal 233, 249–322 (2019). https://doi.org/10.1007/s00205-019-01357-w

Download citation

  • Received: 22 May 2018

  • Accepted: 11 January 2019

  • Published: 01 February 2019

  • Issue Date: 01 July 2019

  • DOI: https://doi.org/10.1007/s00205-019-01357-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.