Abstract
We prove the pathwise well-posedness of stochastic porous media and fast diffusion equations driven by nonlinear, conservative noise. As a consequence, the generation of a random dynamical system is obtained. This extends results of the second author and Souganidis, who considered analogous spatially homogeneous and first-order equations, and earlier works of Lions, Perthame, and Souganidis.
References
Aubin, J.-P.: Un théorème de compacité. C. R. Acad. Sci. Paris 256, 5042–5044 (1963)
Barbu, V., Bogachev, V.I., Da Prato, G., Röckner, M.: Weak solutions to the stochastic porous media equation via Kolmogorov equations: the degenerate case. J. Funct. Anal. 237(1), 54–75 (2006)
Barbu, V., Da Prato, G., Röckner, M.: Existence and uniqueness of nonnegative solutions to the stochastic porous media equation. Indiana Univ. Math. J. 57(1), 187–211 (2008)
Barbu, V., Da Prato, G., Röckner, M.: Some results on stochastic porous media equations. Boll. Unione Mat. Ital. (9) 1(1), 1–15 2008
Barbu, V., Da Prato, G., Röckner, M.: Existence of strong solutions for stochastic porous media equation under general monotonicity conditions. Ann. Probab. 37(2), 428–452 (2009)
Barbu, V., Da Prato, G., Röckner, M.: Stochastic Porous Media Equations, Volume 2163 of Lecture Notes in Mathematics. Springer, Cham, 2016
Barbu, V., Röckner, M.: On a random scaled porous media equation. J. Diff. Equ. 251(9), 2494–2514 (2011)
Barbu, V., Röckner, M., Russo, F.: Stochastic porous media equations in \({\mathbb{R}^d}\). J. Math. Pures Appl. (9) 103(4), 1024–1052 2015
Blanchard, D., Murat, F.: Renormalised solutions of nonlinear parabolic problems with \({L^1}\) data: existence and uniqueness. Proc. Roy. Soc. Edinburgh Sect. A 127(6), 1137–1152 (1997)
Blanchard, D., Redwane, H.: Solutions renormalisées d'équations paraboliques à deux non linéarités. C. R. Acad. Sci. Paris Sér. I Math. 319(8), 831–835 1994
Blanchard, D., Redwane, H.: Renormalized solutions for a class of nonlinear evolution problems. J. Math. Pures Appl. (9) 77(2), 117–151 1998
Chen, G.-Q., Perthame, B.: Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(4), 645–668 2003
Crisan, D., Diehl, J., Friz, P.K., Oberhauser, H.: Robust filtering: correlated noise and multidimensional observation. Ann. Appl. Probab. 23(5), 2139–2160 (2013)
Da Prato, G., Röckner, M.: Weak solutions to stochastic porous media equations. J. Evol. Equ. 4(2), 249–271 (2004)
Da Prato, G., Röckner, M., Rozovskii, B.L., Wang, F.-Y.: Strong solutions of stochastic generalized porous media equations: existence, uniqueness, and ergodicity. Commun. Partial Differ. Equ. 31(1–3), 277–291 (2006)
Dean, D.S.: Langevin equation for the density of a system of interacting langevin processes. J. Phys. A Math. Gen. 29(24), L613 (1996)
DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. (2) 130(2), 321–366 1989
Dirr, N., Stamatakis, M., Zimmer, J.: Entropic and gradient flow formulations for nonlinear diffusion. J. Math. Phys. 57(8), 081505 (2016)
Donev, A., Fai, T.G., Vanden-Eijnden, E.: A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to fick's law. J. Stat. Mech. Theory Exp. P04004 2014
Ebmeyer, C.: Regularity in Sobolev spaces for the fast diffusion and the porous medium equation. J. Math. Anal. Appl. 307(1), 134–152 (2005)
Fehrman, B., Gess, B.: Well-posedness of stochastic porous media equations with nonlinear, conservative noise. arXiv e-prints, Version 1, December 2017
Ferrari, P.A., Presutti, E., Vares, M.E.: Local equilibrium for a one-dimensional zero range process. Stoch. Process. Appl. 26(1), 31–45 (1987)
Ferrari, P.A., Presutti, E., Vares, M.E.: Nonequilibrium fluctuations for a zero range process. Ann. Inst. H. Poincaré Probab. Stat. 24(2), 237–268 (1988)
Flandoli, F.: Regularity Theory and Stochastic Flows for Parabolic SPDEs, Volume 9 of Stochastics Monographs. Gordon and Breach Science Publishers, Yverdon, 1995
Friz, P.K., Hairer, M.: A Course on Rough Paths. Universitext. Springer, Cham, 2014. With an Introduction to Regularity Structures
Friz, P.K., Victoir, N.B.: Multidimensional Stochastic Processes as Rough Paths, Volume 120 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010. Theory and Applications
Gess, B.: Strong solutions for stochastic partial differential equations of gradient type. J. Funct. Anal. 263(8), 2355–2383 (2012)
Gess, B.: Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise. Ann. Probab. 42(2), 818–864 (2014)
Gess, B., Souganidis, P.E.: Scalar conservation laws with multiple rough fluxes. Commun. Math. Sci. 13(6), 1569–1597 (2015)
Gess, B., Souganidis, P.E.: Stochastic non-isotropic degenerate parabolic-hyperbolic equations. Stoch. Process. Appl. 127(9), 2961–3004 (2017)
Gess, B., Souganidis, P.E.: Long-time behavior, invariant measures, and regularizing effects for stochastic scalar conservation laws. Commun. Pure Appl. Math. 70(8), 1562–1597 (2017)
Grün, G., Mecke, K., Rauscher, M.: Thin-film flow influenced by thermal noise. J. Stat. Phys. 122(6), 1261–1291 (2006)
Kawasaki, K.: Microscopic analyses of the dynamical density functional equation of dense fluids. J. Stat. Phys. 93(3–4), 527–546 (1998)
Kim, J.U.: On the stochastic porous medium equation. J. Differ. Equ. 220(1), 163–194 (2006)
Krylov, N.V., Rozovskiĭ, B.L.: The Cauchy problem for linear stochastic partial differential equations. Izv. Akad. Nauk SSSR Ser. Mat. 41(6), 1329–1347, 1448 1977
Krylov, N.V., Rozovskiĭ, B.L.: Stochastic evolution equations [mr0570795]. In: Stochastic Differential Equations: Theory and Applications, Volume 2 of Interdisciplinary Mathematical Sciences, pp. 1–69.World Scientific Publishing, Hackensack, NJ 2007
Ladyzenskaja, O., Solonnikov, V., Uraltceva, N.: Linear and Quasilinear Equations of Parabolic Type. Izdat. ``Nauka'', Moscow, 1967
Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 2006
Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 2006
Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)
Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non linéaires. Dunod; Gauthier-Villars, Paris (1969)
Lions, P.-L., Perthame, B., Souganidis, P.E.: Scalar conservation laws with rough (stochastic) fluxes. Stoch. Partial Differ. Equ. Anal. Comput. 1(4), 664–686 (2013)
Lions, P.-L., Perthame, B., Souganidis, P.E.: Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case. Stoch. Partial Differ. Equ. Anal. Comput. 2(4), 517–538 (2014)
Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 326(9), 1085–1092 1998
Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic partial differential equations: non-smooth equations and applications. C. R. Acad. Sci. Paris Sér. I Math. 327(8), 735–741 1998
Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic pde with semilinear stochastic dependence. C. R. Acad. Sci. Paris Sér. I Math. 331(8), 617–624 2000
Lions, P.-L., Souganidis, P.E.: Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 331(10), 783–790 2000
Lions, P.-L., Souganidis, P.E.: Viscosity solutions of fully nonlinear stochastic partial differential equations. Sūrikaisekikenkyūsho Kōkyūroku (1287), 58–65 2002 [Viscosity solutions of differential equations and related topics (Japanese) (Kyoto, 2001)]
Lyons, T.: On the nonexistence of path integrals. Proc. R. Soc. Lond. Ser. A 432(1885), 281–290 (1991)
Lyons, T.: Differential equations driven by rough signals. Rev. Mat. Iberoam. 14(2), 215–310 (1998)
Lyons, T., Qian, Z.: System Control and Rough Paths. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2002 (Oxford Science Publications)
Lyons, T.J.: Differential equations driven by rough signals. Rev. Mat. Iberoam. 14(2), 215–310 (1998)
Marconi, U.M.B., Tarazona, P.: Dynamic density functional theory of fluids. J. Chem. Phys. 110(16), 8032–8044 (1999)
Mohammed, S.-E.A., Zhang, T., Zhao, H.: The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations. Mem. Am. Math. Soc. 196(917), vi+105 2008
Pardoux, É.: Sur des équations aux dérivées partielles stochastiques monotones. C. R. Acad. Sci. Paris Sér. A-B 275, A101–A103 1972
Perthame, B.: Kinetic Formulation of Conservation Laws, Volume 21 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2002
Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations, Volume 1905 of Lecture Notes in Mathematics. Springer, Berlin, 2007
Ren, J., Röckner, M., Wang, F.-Y.: Stochastic generalized porous media and fast diffusion equations. J. Differ. Equ. 238(1), 118–152 (2007)
Röckner, M., Wang, F.-Y.: Non-monotone stochastic generalized porous media equations. J. Differ. Equ. 245(12), 3898–3935 (2008)
Rozovskiĭ, B.L.: Stochastic Evolution Systems, Volume 35 ofMathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1990 (Linear theory and applications to nonlinear filtering, Translated fromthe Russian byA.Yarkho)
Simon, J.: Compact sets in the space \({L^{p}(0, T;B)}\). Ann. Mat. Pura Appl. 4(146), 65–96 (1987)
Acknowledgements
Open access funding provided by Max Planck Society. We would like to thank the referees for their careful reports. Their comments were of substantial benefit to the paper. The first author was supported by the National Science Foundation Mathematical Sciences Postdoctoral Research Fellowship under Grant No. 1502731. The second author acknowledges financial support by the the Max Planck Society through the Max Planck Research Group “Stochastic partial differential equations” and by the DFG through the CRC “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their applications”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P.-L. Lions
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Fehrman, B., Gess, B. Well-Posedness of Nonlinear Diffusion Equations with Nonlinear, Conservative Noise. Arch Rational Mech Anal 233, 249–322 (2019). https://doi.org/10.1007/s00205-019-01357-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-019-01357-w