The Effect of Forest Dislocations on the Evolution of a Phase-Field Model for Plastic Slip

Abstract

We consider the gradient flow evolution of a phase-field model for crystal dislocations in a single slip system in the presence of forest dislocations. The model is based on a Peierls–Nabarro type energy penalizing non-integer slip and elastic stress. Forest dislocations are introduced as a perforation of the domain by small disks where slip is prohibited. The \({\Gamma}\)-limit of this energy was deduced by Garroni and Müller (SIAM J Math Anal 36(6):1943–1964, 2005, Arch Ration Mech Anal 181(3):535–578, 2006). Our main result shows that the gradient flows of these \({\Gamma}\)-convergent energy functionals do not approach the gradient flow of the limiting energy. Indeed, the gradient flow dynamics remains a physically reasonable model in the case of non-monotone loading. Our proofs rely on the construction of explicit sub- and super-solutions to a fractional Allen–Cahn equation on a flat torus or in the plane, with Dirichlet data on a union of small discs. The presence of these obstacles leads to an additional friction in the viscous evolution which appears as a stored energy in the \({\Gamma}\)-limit, but it does not act as a driving force. Extensions to related models with soft pinning and non-viscous evolutions are also discussed. In terms of physics, our results explain how in this phase field model the presence of forest dislocations still allows for plastic as opposed to only elastic deformation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ansini, N., Braides, A.: Asymptotic analysis of periodically-perforated nonlinear media. J. Math. Pures Appl. (9), 81(5), 439–451 2002

  2. 2.

    Alberti, G., Bouchitté, G., Seppecher, P.: Phase transition with the line-tension effect. Arch. Rational Mech. Anal. 144(1), 1–46 (1998)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Baernstein II, A.: A unified approach to symmetrization. Partial Differential Equations of Elliptic Type, Eds. A. Alvino et al., Symposia Matematica, 35, 47–91 1994

  4. 4.

    Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: viscosity solutions' theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(3), 567–585 (2008)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Bronsard, L., Kohn, R.V.: On the slowness of phase boundary motion in one space dimension. Commun. Pure Appl. Math. 43(8), 983–997 (1990)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Cioranescu, D., Murat, F.: A strange term coming from nowhere. Topics in the Mathematical Modelling of Composite Materials, volume 31 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser Boston, Boston, MA, pp. 45–93 1997

  7. 7.

    Carr, J., Pego, R.L.: Metastable patterns in solutions of \(u_t= \epsilon ^2 u_{xx}-f (u)\). Commun. Pure Appl. Math. 42(5), 523–576 (1989)

    MATH  Article  Google Scholar 

  8. 8.

    Cabré, X., Solà-Morales, J.: Layer solutions in a half-space for boundary reactions. Commun. Pure Appl. Math. 58(12), 1678–1732 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Droniou, J., Imbert, C.: Fractal first-order partial differential equations. Arch. Ration. Mech. Anal. 182(2), 299–331 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Dirr, N., Karali, G., Yip, N.K.: Pulsating wave for mean curvature flow in inhomogeneous medium. Eur. J. Appl. Math. 19(6), 661–699 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Demir, E., Raabe, D.: Mechanical and microstructural single-crystal Bauschinger effects: Observation of reversible plasticity in copper during bending. Acta Mater. 58(18), 6055–6063 (2010)

    Article  Google Scholar 

  12. 12.

    Dirr, N., Yip, N.K.: Pinning and de-pinning phenomena in front propagation in heterogeneous media. Interfaces Free Bound. 8(1), 79–109 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Fernández-Real, X., Ros-Oton, X.: Regularity theory for general stable operators: parabolic equations. J. Funct. Anal. 272(10), 4165–4221 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Garroni, A., Müller, S.: \(\Gamma \)-limit of a phase-field model of dislocations. SIAM J. Math. Anal., 36(6), 1943–1964 (electronic), 2005

  15. 15.

    Garroni, A., Müller, S.: A variational model for dislocations in the line tension limit. Arch. Ration. Mech. Anal. 181(3), 535–578 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Gonzalez, M.d.M., Monneau, R.: Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one. DCDS-A, 32(4), 1255–1286 2012

  17. 17.

    Imbert, C.: A non-local regularization of first order Hamilton-Jacobi equations. J. Differ. Equ. 211(1), 218–246 (2005)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Imbert, C., Souganidis, P.: Phase field theory for fractional reaction-diffusion equations and applications. preprint arXiv:0907.5524, 2009

  19. 19.

    Koslowski, M., Cuitiño, A.M., Ortiz, M.: A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals. J. Mech. Phys. Solids 50(12), 2597–2635 (2002)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Kurzke, M.: Boundary vortices in thin magnetic films. Calc. Var. Partial Differ. Equ. 26(1), 1–28 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Kurzke, M.: The gradient flow motion of boundary vortices. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(1), 91–112 (2007)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Mielke, A.: Emergence of rate-independent dissipation from viscous systems with wiggly energies. Contin. Mech. Thermodyn. 24(4–6), 591–606 (2012)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Marchenko, V.A., Khruslov, E.Y.: Boundary-value problems with fine-grained boundary. Mat. Sb. (N.S.), 65(107), 458–472 1964

  24. 24.

    Marchenko, V.A., Khruslov, E.Y.: Izdat. “Naukova Dumka”, Kiev, 1974

  25. 25.

    Patrizi, S., Valdinoci, E.: Crystal dislocations with different orientations and collisions. Arch. Ration. Mech. Anal. 217(1), 231–261 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Patrizi, S., Valdinoci, E.: Long-time behavior for crystal dislocation dynamics. Math. Models Methods Appl. Sci. 27(12), 2185–2228 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101(3), 275–302 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Serfaty, S.: Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst 31(4), 1427–1451 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57(12), 1627–1672 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Savin, O., Valdinoci, E.: \(\Gamma \)-convergence for nonlocal phase transitions. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(4), 479–500 (2012)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58(1), 133–154 (2014)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

PWD gratefully acknowledges partial support by the Wissenschaftler-Rückkehrprogramm GSO/CZS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrick W. Dondl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. Müller

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dondl, P.W., Kurzke, M.W. & Wojtowytsch, S. The Effect of Forest Dislocations on the Evolution of a Phase-Field Model for Plastic Slip. Arch Rational Mech Anal 232, 65–119 (2019). https://doi.org/10.1007/s00205-018-1317-2

Download citation