Skip to main content

Advertisement

SpringerLink
  • Archive for Rational Mechanics and Analysis
  • Journal Aims and Scope
  • Submit to this journal
The Transmission Problem on a Three-Dimensional Wedge
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

An Inverse Problem for Determining the Shape of the Wedge in Steady Supersonic Potential Flow

08 February 2023

Yun Pu & Yongqian Zhang

Inversion Symmetry of the Solutions of Basic Boundary-Value Problems of Two-Dimensional Elasticity Theory for a Wedge

04 April 2020

V. I. Ostrik

Wave diffraction from the PEC finite wedge

26 May 2022

Dozyslav B. Kuryliak

Periodic Crack Systems in an Elastic Wedge

01 July 2018

D. A. Pozharskii

Airy Kernel Determinant Solutions to the KdV Equation and Integro-Differential Painlevé Equations

07 June 2021

Mattia Cafasso, Tom Claeys & Giulio Ruzza

Reverse Inequalities for Subelliptic Functions

26 April 2022

V. S. Klimov

A Poincaré determinant on the torus

28 May 2022

Julio Delgado

Discrete spectrum of Schrödinger operators with potentials concentrated near conical surfaces

02 December 2019

Sebastian Egger, Joachim Kerner & Konstantin Pankrashkin

Dirac operator spectrum in tubes and layers with a zigzag-type boundary

10 October 2022

Pavel Exner & Markus Holzmann

Download PDF
  • Open Access
  • Published: 17 September 2018

The Transmission Problem on a Three-Dimensional Wedge

  • Karl-Mikael Perfekt  ORCID: orcid.org/0000-0003-4574-96831 

Archive for Rational Mechanics and Analysis volume 231, pages 1745–1780 (2019)Cite this article

  • 457 Accesses

  • 5 Citations

  • 2 Altmetric

  • Metrics details

Abstract

We consider the transmission problem for the Laplace equation on an infinite three-dimensional wedge, determining the complex parameters for which the problem is well-posed, and characterizing the infinite multiplicity nature of the spectrum. This is carried out in two formulations leading to rather different spectral pictures. One formulation is in terms of square integrable boundary data, the other is in terms of finite energy solutions. We use the layer potential method, which requires the harmonic analysis of a non-commutative non-unimodular group associated with the wedge.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. Dover, New York (1972)

    MATH  Google Scholar 

  2. Alù A., Silveirinha M.G., Salandrino A., Engheta N.: Epsilon-near zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007)

    Article  ADS  Google Scholar 

  3. Ammari H., Millien P., Ruiz M., Zhang H.: Mathematical analysis of plasmonic nanoparticles: the scalar case. Arch. Ration. Mech. Anal. 224(2), 597–658 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ammari H., Ruiz M., Yu S., Zhang H.: Mathematical analysis of plasmonic resonances for nanoparticles: the full Maxwell equations. J. Differ. Equ. 261(6), 3615–3669 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bahouri H., Chemin J.-Y., Danchin R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Vol. 343. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  6. Bonnetier, E., Zhang, H.: Characterization of the essential spectrum of the Neumann–Poincaré operator in 2D domains with corner via Weyl sequences. Rev. Mat. Iberoam (to appear). arXiv:1702.08127

  7. Chandler-Wilde S.N., Hewett D.P., Moiola A.: Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counter examples. Mathematika 61(2), 414–443 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costabel M.: Some historical remarks on the positivity of boundary integral operators, Boundary element analysis Lecture Notes in Applied and Computational Mechanics, Vol. 29. Springer, Berlin (2007) 1–27, 2007

    Google Scholar 

  9. Costabel M., Stephan E.: A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106(2), 367–413 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dahlberg B.E.J., Kenig C.E.: Hardy spaces and the Neumann problem in L p for Laplace’s equation in Lipschitz domains. Ann. Math. (2) 125(3), 437–465 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Nezza E., Palatucci G., Valdinoci E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding Z.: A proof of the trace theorem of Sobolev spaces on Lipschitz domains. Proc. Am. Math. Soc. 124(2), 591–600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dobrzynski L., Maradudin A.A.: Electrostatic edge modes in a dielectric wedge. Phys. Rev. B 6, 3810–3815 (1972)

    Article  ADS  Google Scholar 

  14. Duflo M., Moore C.C.: On the regular representation of a nonunimodular locally compact group. J. Funct. Anal. 21(2), 209–243 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Einav A., Loss M.: Sharp trace inequalities for fractional Laplacians. Proc. Am. Math. Soc. 140(12), 4209–4216 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elschner J.: Asymptotics of solutions to pseudodifferential equations of Mellin type. Math. Nachr. 130(1), 267–305 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Escauriaza L., Fabes E.B., Verchota G.: On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries. Proc. Am. Math. Soc. 115(4), 1069–1076 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Escauriaza L., Mitrea M.: Transmission problems and spectral theory for singular integral operators on Lipschitz domains. J. Funct. Anal. 216(1), 141–171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eymard, P., Terp, M.: La transformation de Fourier et son inverse sur le groupe des ax + b d’un corps local, Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg 1976–1978), II, Lecture Notes in Mathematics , Vol. 739, 207–248

  20. Fabes E.B., Jodeit M. Jr., Rivière N.M.: Potential techniques for boundary value problems on C 1-domains. Acta Math. 141(3-4), 165–186 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fabes E.B., Jodeit M. Jr., Lewis J.E.: Double layer potentials for domains with corners and edges. Indiana Univ. Math. J. 26(1), 95–114 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fabes E., Mendez O., Mitrea M.: Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159(2), 323–368 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Führ H.: Hausdorff–Young inequalities for group extensions. Can. Math. Bull. 49(4), 549–559 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gelfand I., Neumark M.: Unitary representations of the group of linear transformations of the straight line. C. R. (Doklady) Acad. Sci URSS (N.S.) 55, 567–570 (1947)

    MathSciNet  MATH  Google Scholar 

  25. Grachev, N.V., Maz’ya, V.G.: The Fredholm radius of integral operators of potential theory, Nonlinear equations and variational inequalities. Linear operators and spectral theory (Russian), Probl. Mat. Anal., Vol. 11, 109–133, 251, 1990 (translated in J. Soviet Math. 64(6), 1297–1313, 1993)

  26. Hassi S., Sebestyén Z., de Snoo H.S.V.: On the nonnegativity of operator products. Acta Math. Hungar. 109(1–2), 1–14 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Helsing J., Perfekt K.-M.: On the polarizability and capacitance of the cube. Appl. Comput. Harmon. Anal. 34(3), 445–468 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Helsing, J., Perfekt, K.-M.: The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points. J. Math. Pures Appl. 118(9), 235–287 (2018)

  29. Hofmann S., Mitrea M., Taylor M.: Singular integrals and elliptic boundary problems on regular Semmes–Kenig–Toro domains. Int. Math. Res. Not. IMRN 14, 2567–2865 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Kang H., Lim M., Yu S.: Spectral resolution of the Neumann–Poincaré operator on intersecting disks and analysis of plasmon resonance. Arch. Ration. Mech. Anal. 226(1), 83–115 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kenig, C.E.: Recent progress on boundary value problems on Lipschitz domains, Pseu dodifferential operators and applications (Notre Dame, Ind., 1984). Proceedings of the Symposium in Pure Mathematics , Vol. 43. American Mathematical Society, Providence,175–205, 1985

  32. Khalil I.: Sur l’analyse harmonique du groupe affine de la droite. Stud. Math. 51, 139–167 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  33. Khavinson D., Putinar M., Shapiro H.S.: Poincaré’s variational problem in potential theory. Arch. Ration. Mech. Anal. 185(1), 143–184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Klein A., Russo B.: Sharp inequalities for Weyl operators and Heisenberg groups. Math. Ann. 235(2), 175–194 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kleppner A., Lipsman R.L.: The Plancherel formula for group extensions. I. Ann. Sci. École Norm. Sup. (4) 5, 459–516 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kleppner A., Lipsman R.L.: The Plancherel formula for group extensions. II. Ann. Sci. École Norm. Sup. (4) 6, 103–132 (1973)

    Article  MATH  Google Scholar 

  37. Kozlov V.A., Maz’ya V.G., Rossmann J.: Elliptic Boundary Value Problems in Domains with Point Singularities, Mathematical Surveys and Monographs, Vol. 52. American Mathematical Society, Providence (1997)

    Google Scholar 

  38. Krein M.G.: Compact linear operators on functional spaces with two norms. Integr. Equ. Oper. Theory 30(2), 140–162 (1998) Translated from the Ukranian, dedicated to the memory of Mark Grigorievich Krein (1907–1989)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lewis J.E.: Layer potentials for elastostatics and hydrostatics in curvilinear polygonal domains. Trans. Am. Math. Soc. 320(1), 53–76 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lewis J.E.: A symbolic calculus for layer potentials on C 1 curves and C 1 curvilinear polygons. Proc. Am. Math. Soc. 112(2), 419–427 (1991)

    MATH  Google Scholar 

  41. Lewis J.E., Parenti C.: Pseudo differential operators of Mellin type. Commun. Partial Differ. Equ. 8(5), 477–544 (1983)

    Article  MATH  Google Scholar 

  42. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, Vol. I. Springer, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181

  43. Maxwell Garnett J.C.: VII. Colours in metal glasses, in metallic films, and in metallic solutions. II. Philos. Trans. R. Soc. A 205(387-401), 237–288 (1906)

    Article  ADS  Google Scholar 

  44. McCarthy John E.: Geometric interpolation between Hilbert spaces. Ark.Mat. 30(2), 321–330 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Medková D.: The Laplace Equation: Boundary Value Problems on Bounded and Un bounded Lipschitz Domains. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  46. Milton G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  47. Mitrea I.: On the spectra of elastostatic and hydrostatic layer potentials on curvilinear polygons. J. Fourier Anal. Appl. 8(5), 443–487 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque, 344, viii+241 (2012)

  49. Nicorovici N.A., McPhedran R.C., Milton G.W.: Transport properties of a three phase composite material: the square array of coated cylinders. Proc. R. Soc. Lond. A 442(1916), 599–620 (1993)

    Article  ADS  Google Scholar 

  50. Nikoshkinen K.I., Lindell I.V.: Image solution for Poisson’s equation in wedge geometry. IEEE. Trans. Antennas Propag. 43(2), 179–187 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Perfekt K.-M., Putinar M.: Spectral bounds for the Neumann–Poincaré operator on planar domains with corners. J. Anal. Math. 124(1), 39–57 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Perfekt K.-M., Putinar M.: The essential spectrum of the Neumann–Poincaré operator on a domain with corners. Arch. Ration. Mech. Anal. 223(2), 1019–1033 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Qiao Y.: Double layer potentials on three-dimensional wedges and pseudodifferential operators on Lie groupoids. J. Appl. Math. Anal. Appl. 462(1), 428–447 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Qiao Y., Nistor V.: Single and double layer potentials on domains with conical points I: straight cones. Integr. Equ. Oper. Theory 72(3), 419–448 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Scharstein R.W.: Green’s function for the harmonic potential of the three-dimensional wedge transmission problem. IEEE. Trans. Antennas Propag. 52(2), 452–460 (2004)

    Article  ADS  Google Scholar 

  56. Schmüdgen K.: Unbounded Self-Adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, Vol. 265. Springer, Dordrecht (2012)

    Book  Google Scholar 

  57. Shelepov V.Yu.: On the index and spectrum of integral operators of potential type along Radon curves. Mat. Sb. 181(6), 751–778 (1990)

    MathSciNet  Google Scholar 

  58. Valagiannopoulos C.A., Sihvola A.: Improving the electrostatic field concentration in a negative-permittivity wedge with a grounded “bowtie” configuration. Radio Sci. 48(3), 316–325 (2013)

    Article  ADS  Google Scholar 

  59. Verchota G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59(3), 572–611 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wallén H., Kettunen H., Sihvola A.: Surface modes of negative-parameter interfaces and the importance of rounding sharp corners. Metamaterials 2, 113–121 (2008)

    Article  ADS  Google Scholar 

  61. Yu S., Ammari H.: Plasmonic interaction between nanospheres. SIAM Rev. 60(2), 356–385 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Johan Helsing, Anders Karlsson, and Tobias Kuna for helpful discussions. The author is also grateful to the American Institute of Mathematics, San Jose, USA and the Erwin Schrödinger Institute, Vienna, Austria, in each of which some of this work was prepared.

Author information

Authors and Affiliations

  1. Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK

    Karl-Mikael Perfekt

Authors
  1. Karl-Mikael Perfekt
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Karl-Mikael Perfekt.

Additional information

Communicated by C. Le Bris

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perfekt, KM. The Transmission Problem on a Three-Dimensional Wedge. Arch Rational Mech Anal 231, 1745–1780 (2019). https://doi.org/10.1007/s00205-018-1308-3

Download citation

  • Received: 06 June 2018

  • Accepted: 04 September 2018

  • Published: 17 September 2018

  • Issue Date: 07 March 2019

  • DOI: https://doi.org/10.1007/s00205-018-1308-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.