Skip to main content

Thermodynamic Limit of Crystal Defects with Finite Temperature Tight Binding

Abstract

We consider a tight binding model for localised crystalline defects with electrons in the canonical ensemble (finite Fermi temperature) and nuclei positions relaxed according to the Born–Oppenheimer approximation. We prove that the limit model as the computational domain size grows to infinity is formulated in the grand-canonical ensemble for the electrons. The Fermi-level for the limit model is fixed at a homogeneous crystal level, independent of the defect or electron number in the sequence of finite-domain approximations. We quantify the rates of convergence for the nuclei configuration and for the Fermi-level.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Alavi, A., Kohanoff, J., Parrinello, M., Frenkel, D.: Ab initio molecular dynamics with excited electrons. Phys. Rev. Lett. 73, 2599–2602 (1994)

    ADS  Article  Google Scholar 

  2. 2.

    Alicandro, R., De Luca, L., Garroni, A., Ponsiglione, M.: Metastability and dynamics of discrete topological singularities in two dimensions: A \(\gamma \)-convergence approach. Arch. Ration. Mech. Anal. 214, 269–330 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Blanc, X., Le Bris, C.: Lions, V: From molecular models to continuum mechanics. Arch. Rat. Mech. Anal. 164, 341–381 (2002)

    Article  MATH  Google Scholar 

  4. 4.

    Blanc, X., Le Bris, C.: Lions, V: On the energy of some microscopic stochastic lattices. Part I. Arch. Rat. Mech. Anal. 184, 303–340 (2007)

    Article  MATH  Google Scholar 

  5. 5.

    Cancès, E., Bris, C.L.: Mathematical modeling of point defects in materials science. Math. Models Methods Appl. Sci. 23, 1795–1859 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Cancès, E., Deleurence, A., Lewin, M.: A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case. Commun. Math. Phys. 281, 129–177 (2008)

    ADS  Article  MATH  Google Scholar 

  7. 7.

    Cancès, E., Deleurence, A., Lewin, M.: Non-perturbative embedding of local defects in crystalline materials. J. Phys. Condens. Matter 20, 294213 (2008)

    Article  Google Scholar 

  8. 8.

    Cancès, E., Ehrlacher, V.: Local defects are always neutral in the Thomas-Fermi-von Weiszäcker theory of crystals. Arch. Ration. Mech. Anal. 202, 933–973 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Cancès, E., Lewin, M.: The dielectric permittivity of crystals in the reduced Hartree-Fock approximation. Arch. Ration. Mech. Anal. 197, 139–177 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Catto, I., Le Bris, C., Lions, P.-L.: The Mathematical Theory of Thermodynamic Limits: Thomas-Fermi Type Models. Oxford Mathematical Monographs. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  11. 11.

    Catto, I.,Le Bris, C.,Lions, P.-L.: On the thermodynamic limit for Hartree-Fock type models. Ann. Inst. H. Poincaré, Anal. 18, 687–760 (2001)

  12. 12.

    Chen, H.,Lu, J.,Ortner, C.: Thermodynamic limit of crystal defects with finite temperature tight binding. arXiv:1607.06850v2

  13. 13.

    Chen, H.,Nazar, Q.,Ortner, C.: Geometry equilibration of crystalline defects in quantum and atomistic descriptions. arXiv:1709.02770

  14. 14.

    Chen, H., Ortner, C.: QM/MM methods for crystalline defects. Part 1: Locality of the tight binding model. Multiscale Model. Simul. 14, 232–264 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Chen, H., Ortner, C.: QM/MM methods for crystalline defects. Part 2: Consistent energy and force-mixing. Multiscale Model. Simul. 15, 184–214 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Chen, J., Lu, J.: Analysis of the divide-and-conquer method for electronic structure calculations. Math. Comput. 85, 2919–2938 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    E, W.,Lu, J.: The elastic continuum limit of the tight binding model. Chin. Ann. Math. Ser. B 28, 665–675 (2007)

  18. 18.

    E, W.,Lu, J.: The electronic structure of smoothly deformed crystals: Cauchy-Born rule for the nonlinear tight-binding model. Commun. Pure Appl. Math. 63, 1432–1468 (2010)

  19. 19.

    E, W.,Lu, J.: The electronic structure of smoothly deformed crystals: Wannier functions and the Cauchy–Born rule. Arch. Ration. Mech. Anal. 199, 407–433 (2011)

  20. 20.

    E, W.,Lu, J.: The Kohn–Sham equation for deformed crystals. Mem. Am. Math. Soc. 221(1040) (2013)

  21. 21.

    Ehrlacher, V., Ortner, C., Shapeev, A.: Analysis of boundary conditions for crystal defect atomistic simulations. Arch. Ration. Mech. Anal. 222, 1217–1268 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Ercolessi, F.: Lecture notes on tight-binding molecular dynamics and tight-binding justification of classical potentials. Lecture notes (2005)

  23. 23.

    Finnis, M.: Interatomic Forces in Condensed Matter. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  24. 24.

    First-principles calculations for point defects in solids: Freysoldt, C., B, G., Hickel, T., Neugebauer, J., Kresse, G., Janotti, A., Van de Walle, C.G. Rev. Mod. Phys. 86, 253–305 (2014)

    ADS  Article  Google Scholar 

  25. 25.

    Goedecker, S., Teter, M.: Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals. Phys. Rev. B 51, 9455–9464 (1995)

    ADS  Article  Google Scholar 

  26. 26.

    Gontier, D., Lahbabi, S.: Supercell calculations in the reduced Hartree-Fock model for crystals with local defects. AMRX 2017, 1–64 (2017)

    MathSciNet  Google Scholar 

  27. 27.

    Goringe, C., Bowler, D., Hernández, E.: Tight-binding modelling of materials. Rep. Prog. Phys. 60, 1447–1512 (1997)

    ADS  Article  Google Scholar 

  28. 28.

    Hudson, T., Ortner, C.: Analysis of stable screw dislocation configurations in an anti-plane lattice model. SIAM J. Math. Anal. 41, 291–320 (2015)

    Article  MATH  Google Scholar 

  29. 29.

    Kittle, C.: Introduction to Solid State Physics. Wiley, New York (1996)

    Google Scholar 

  30. 30.

    Li, X.,Lin, L.,Lu, J.: PEXSI-\(\Sigma \): a Green's function embedding method for Kohn–Sham density functional theory. Ann. Math. Sci. Appl. (in press). arXiv:1606.00515

  31. 31.

    Lieb, E., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Luskin, M., Ortner, C.: Atomistic-to-continuum-coupling. Acta Numer. 22, 397–508 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Martin, R.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  34. 34.

    Mermin, N.: Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441–A1443 (1965)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    Nazar, F., Ortner, C.: Locality of the Thomas-Fermi-von Weizsäcker equations. Arch. Ration. Mech. Anal. 224, 817–870 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Papaconstantopoulos, D.: Handbook of the Band Structure of Elemental Solids, From \(Z = 1\) To \(Z = 112\). Springer, New York, 2015

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huajie Chen.

Additional information

Huajie Chen’s work was partially supported by the Fundamental Research Funds for the Central Universities, China under Grant 2017EYT22. Jianfeng Lu’s work was supported in part by the National Science Foundation under Grants DMS-1312659 and DMS-1454939. Christoph Ortner’s work was supported by ERC Starting Grant 335120.

Communicated by G. Friesecke

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Lu, J. & Ortner, C. Thermodynamic Limit of Crystal Defects with Finite Temperature Tight Binding. Arch Rational Mech Anal 230, 701–733 (2018). https://doi.org/10.1007/s00205-018-1256-y

Download citation