Skip to main content
Log in

Effective Maxwell’s Equations for Perfectly Conducting Split Ring Resonators

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We analyze the time harmonic Maxwell’s equations in a geometry containing perfectly conducting split rings. We derive the homogenization limit in which the typical size η of the rings tends to zero. The split rings act as resonators and the assembly can act, effectively, as a magnetically active material. The frequency dependent effective permeability of the medium can be large and/or negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci., 21(9):823–864, 1998.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bensoussan, A., Lions, J.-L., Papanicolaou, G.C.: Homogenization in deterministic and stochastic problems. In Stochastic problems in dynamics (Sympos., Univ. Southampton, Southampton, 1976), pages 106–115. Pitman, London, 1977

  4. Bouchitté, G., Bourel, C., Felbacq, D.: Homogenization of the 3D Maxwell system near resonances and artificial magnetism. C. R. Math. Acad. Sci. Paris, 347(9–10):571–576, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouchitté, G., Felbacq, D.: Homogenization near resonances and artificial magnetism from dielectrics. C. R. Math. Acad. Sci. Paris, 339(5):377–382, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouchitté, G., Felbacq, D.: Homogenization of a wire photonic crystal: the case of small volume fraction. SIAM J. Appl. Math., 66(6):2061–2084, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouchitté, G., Schweizer, B.: Homogenization of Maxwell's equations in a split ring geometry. Multiscale Model. Simul., 8(3):717–750, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouchitté, G., Schweizer, B.: Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings. Netw. Heterog. Media, 8(4):857–878, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Y., Lipton, R.: Tunable double negative band structure from non-magnetic coated rods. New Journal of Physics, 12(8):083010, 2010.

    Article  ADS  Google Scholar 

  10. Chen, Y., Lipton, R.: Double negative dispersion relations from coated plasmonic rods. Multiscale Modeling and Simulation, 209(3):835–868, 2013.

    MathSciNet  MATH  Google Scholar 

  11. Chen, Y., Lipton, R.: Multiscale methods for engineering double negative metamaterials. Photonics and Nanostructures Fundamentals and Applications, 11(4):442–454, 2013.

    Article  ADS  Google Scholar 

  12. Chen, Y., Lipton, R.: Resonance and double negative behavior in metamaterials. Arch. Ration. Mech. Anal., 11(1):192–212, 2013.

    MathSciNet  MATH  Google Scholar 

  13. Costabel, M.: A coercive bilinear form for Maxwell's equations. J. Math. Anal. Appl., 157(2):527–541, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  14. Felbacq, D., Bouchitté, G.: Homogenization of a set of parallel fibres. Waves Random Media, 7(2):245–256, 1997.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Jikov, V., Kozlov, S., Oleinik, O.: Homogenization of Differential Operators and Integral Functionals. Springer, New York, 1994.

    Book  MATH  Google Scholar 

  16. Kafesaki, M., Tsiapa, I., Katsarakis, N., Koschny, Th., Soukoulis, C.M., Economou, E.N.: Left-handed metamaterials: The fishnet structure and its variations. Phys. Rev. B 75:235114–1–235114–9, 2007

  17. Kohn, R.V., Lu, J., Schweizer, B., Weinstein, M.I.: A variational perspective on cloaking by anomalous localized resonance. Comm. Math. Phys., 328(1):1–27, 2014.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kohn, R.V., Shipman, S.: Magnetism and homogenization of micro-resonators. Multiscale Model. Simul., 7(1):62–92, 2007.

    Article  MATH  Google Scholar 

  19. Lamacz, A., Schweizer, B.: Effective Maxwell equations in a geometry with flat rings of arbitrary shape. SIAM J. Math. Anal., 45(3):1460–1494, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  20. Lamacz, A., Schweizer, B.: Effective acoustic properties of a meta-material consisting of small Helmholtz resonators. DCDS-S, 2016

  21. Lamacz, A., Schweizer, B.: A negative index meta-material for Maxwell's equations. SIAM J. Math. Anal., 48(6):4155–4174, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  22. Lipton, R., Polizzi, A., Thakur, L.: Novel metamaterial surfaces from perfectly conducting subwavelength corrugations. SIAM J. Appl. Math., 77(4):1269–1291, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  23. Milton, G.W., Nicorovici, N.-A.P.: On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462:3027–3059, 2006.

    MATH  Google Scholar 

  24. Movchan, A.B., Guenneau, S.: Split-ring resonators and localized modes. Phys. Rev. B, 70(12):125116, 2004.

    Article  ADS  Google Scholar 

  25. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett., 85:3966, 2000.

    Article  ADS  Google Scholar 

  26. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science, 312:5781, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  27. Schweizer, B.: Resonance meets homogenization: construction of meta-materials with astonishing properties. Jahresber. Dtsch. Math. Ver., 119(1):31–51, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  28. Schweizer, B.: Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma. INdAM-Springer series, Trends on Applications of Mathematics to Mechanics, 2018.

    Book  Google Scholar 

  29. Schweizer, B., Urban, M.: Effective maxwells equations in general periodic microstructures. Appl. Anal., 0(0):1–21, 2017.

  30. Sellier, A., Burokur, S. N., Kanté, B., de Lustrac, A.: Novel cut wires metamaterial exhibiting negative refractive index. IEEE, 2009

  31. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science, 292(5514):77–79, 2001.

    Article  ADS  Google Scholar 

  32. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ Sov. Phys. Uspekhi, 10:509–514, 1968.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Schweizer.

Additional information

Communicated by G. Friesecke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipton, R., Schweizer, B. Effective Maxwell’s Equations for Perfectly Conducting Split Ring Resonators. Arch Rational Mech Anal 229, 1197–1221 (2018). https://doi.org/10.1007/s00205-018-1237-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1237-1

Navigation