Archive for Rational Mechanics and Analysis

, Volume 229, Issue 3, pp 953–1014

# The Existence of Steady Compressible Subsonic Impinging Jet Flows

• Jianfeng Cheng
• Lili Du
• Yongfu Wang
Article

## Abstract

In this paper, we investigate the compressible subsonic impinging jet flows through a semi-infinitely long nozzle and impacting on a solid wall. Firstly, it is shown that given a two-dimensional semi-infinitely long nozzle and a wall behind the nozzle, and an appropriate atmospheric pressure, then there exists a smooth global subsonic compressible impinging jet flow with two asymptotic directions. The subsonic impinging jet develops two free streamlines, which initiate smoothly at the end points of the semi-infinitely long nozzles. In particular, there exists a smooth curve which separates the fluids which go to different places downstream. Moreover, under some suitable asymptotic assumptions of the nozzle, the asymptotic behaviors of the compressible subsonic impinging jet flows in the inlet and the downstream are obtained by means of a blow-up argument. On the other hand, the non-existence of compressible subsonic impinging jet flows with only one asymptotic direction is also established. This main result in this paper solves the open problem (4) in Chapter 16.3 proposed by Friedman in his famous survey (Friedman in Mathematics in industrial problems, II, I.M.A. volumes in mathematics and its applications, vol 24, Springer, New York, 1989).

## References

1. 1.
Alt, H.W.; Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)
2. 2.
Alt, H.W.; Caffarelli, L.A.; Friedman, A.: Asymmetric jet flows. Commun. Pure Appl. Math. 35, 29–68 (1982)
3. 3.
Alt, H.W.; Caffarelli, L.A.; Friedman, A.: Jet flows with gravity. J. Reine Angew. Math. 35, 58–103 (1982)
4. 4.
Alt, H.W.; Caffarelli, L.A.; Friedman, A.: Axially symmetric jet flows. Arch. Rational Mech. Anal. 81, 97–149 (1983)
5. 5.
Alt, H.W.; Caffarelli, L.A.; Friedman, A.: Jets with two fluids. I. One free boundary. Indiana Univ. Math. J. 33, 213–247 (1984)
6. 6.
Alt, H.W.; Caffarelli, L.A.; Friedman, A.: Jets with two fluids. II. Two free boundaries. Indiana Univ. Math. J. 33, 367–391 (1984)
7. 7.
Alt, H.W., Caffarelli, L.A., Friedman, A.: A free boundary problem for quasilinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11, 1–44, 1984Google Scholar
8. 8.
Alt, H.W.; Caffarelli, L.A.; Friedman, A.: Compressible flows of jets and cavities. J. Differ. Equ. 56, 82–144 (1985)
9. 9.
Berg, P.W.: The existence of subsonic Helmholtz flows of a compressible fluid. Comm. Pure Appl. Math. 15, 289–347 (1962)
10. 10.
Bers, L.: Existence and uniqueness of a subsonic flow past a given profile. Comm. Pure Appl. Math. 7, 441–504 (1954)
11. 11.
Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Surveys in Applied Mathematics, vol. 3. Wiley, New York (1958)
12. 12.
Birkhoff, G.; Zarantonello, E.H.: Jets Wakes and Cavities. Academic Press, New York (1957)
13. 13.
Chen, C.; Du, L.L.; Xie, C.J.; Xin, Z.P.: Two dimensional subsonic Euler flows past a wall or a symmetric body. Arch. Rational Mech. Anal. 221(2), 559–602 (2016)
14. 14.
Chen, G.Q.; Dafermos, C.M.; Slemrod, M.; Wang, D.: On two-dimensional sonic-subsonic flow. Comm. Math. Phys. 271(3), 635–647 (2007)
15. 15.
Chen, G.Q.; Deng, X.M.; Xiang, W.: Global steady subsonic flows through infinitely long nozzles for the full Euler equations. SIAM J. Math. Anal. 202(4), 2888–2919 (2012)
16. 16.
Chen, G.Q.; Huang, F.M.; Wang, T.Y.: Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations. Arch. Rational Mech. Anal. 219(12), 719–740 (2016)
17. 17.
Chen, G.Q.; Huang, F.M.; Wang, T.Y.; Xiang, W.: Incompressible limit of solutions of multidimensional steady compressible Euler equations. Z. Angew. Math. Phys. 67(3), Art. 75, 18 pp, 2016Google Scholar
18. 18.
Chen, X.F.: Axially symmetric jets of compressible fluid. Nonlinear Anal. 16(12), 1057–1087 (1991)
19. 19.
Cheng, J.F., Du, L.L.: Compressible subsonic impinging flows. preprint, 2016Google Scholar
20. 20.
Cheng, J.F.; Du, L.L.: Hydrodynamic jet incident on an uneven wall. Math. Models Methods Appl. Sci. (2018). . to appear
21. 21.
Cheng, J.F.; Du, : L.L., Wang, Y.F.: Two-dimensional impinging jets in hydrodynamic rotational flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(6), 1355–1386 (2017)
22. 22.
Cheng, J.F., Du, L.L., Wang, Y.F.: On incompressible oblique impinging jet flows. preprint, 2016Google Scholar
23. 23.
Courant, R.; Friedrichs, K.O.: Supsonic Flow and Shock Waves. Interscience Publ, New York (1948)
24. 24.
Dong, G.C.; Ou, B.: Subsonic flows around a body in space. Comm. Partial Differential Equations 18, 355–379 (1993)
25. 25.
Du, L.L.; Duan, B.: Global subsonic Euler flows in an infinitely long axisymmetric nozzle. J. Differ. Equ. 250, 813–847 (2011)
26. 26.
Du, L.L.; Xie, C.J.: On subsonic Euler flows with stagnation points in two dimensional nozzles. Indiana Univ. Math. J. 63, 1499–1523 (2014)
27. 27.
Du, L.L.; Xie, C.J.; Xin, Z.P.: Steady subsonic ideal flows through an infinitely long nozzle with large vorticity. Commun. Math. Phys. 328, 327–354 (2014)
28. 28.
Du, L.L.; Weng, S.K.; Xin, Z.P.: Subsonic irrotational flows in a finitely long nozzle with variable end pressure. Commun. Partial Differ. Equ. 39, 666–695 (2014)
29. 29.
Du, L.L.; Xin, Z.P.; Yan, W.: Subsonic flows in a multi-dimensional nozzle. Arch. Rational Mech. Anal. 201, 965–1012 (2011)
30. 30.
Finn, R.: Some theorems on discontinuous plane fluid motions. J. Analyse Math. 4, 246–291 (1956)
31. 31.
Friedman, A.: Variational Principles and Free-boundary Problems. Pure and Applied Mathematics. Wiley, New York (1982)
32. 32.
Friedman, A.: Mathematics in industrial problems, II, I.M.A. Volumes in Mathematics and its Applications, vol. 24. Springer, New York, 1989Google Scholar
33. 33.
Gilbarg, D.; Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001)
34. 34.
Huang, F.M., Wang, T.Y., Wang, Y.: On multi-dimensional sonic-subsonic flow. Acta Math. Sci. Ser. B Engl. Ed. 6, 2131–2140, 2011Google Scholar
35. 35.
Shiffman, M.: On the existence of subsonic flows of a compressible fluid. J. Rational Mech. Anal. 1, 605–652 (1952)
36. 36.
Weinstein, A.: Ein hydrodynamischer Unitätssatz. Math. Z. 19, 265–275 (1924)
37. 37.
Xie, C.J.; Xin, Z.P.: Global subsonic and subsonic-sonic flows through infinitely long nozzles. Indiana Univ. Math. J. 56(6), 2991–3023 (2007)
38. 38.
Xie, C.J.; Xin, Z.P.: Global subsonic and subsonic-sonic flows through infinitely long axially symmetric nozzles. J. Differ. Equ. 248, 2657–2683 (2010)
39. 39.
Xie, C.J.; Xin, Z.P.: Existence of global steady subsonic Euler flows through infinitely long nozzle. SIAM J. Math. Anal. 42(2), 751–784 (2010)