Archive for Rational Mechanics and Analysis

, Volume 229, Issue 2, pp 709–788

# Boundary Equations and Regularity Theory for Geometric Variational Systems with Neumann Data

• Armin Schikorra
Article

## Abstract

We study boundary regularity of maps from two-dimensional domains into manifolds which are critical with respect to a generic conformally invariant variational functional and which, at the boundary, intersect perpendicularly with a support manifold. For example, harmonic maps, or H-surfaces, with a partially free boundary condition. In the interior it is known, by the celebrated work of Rivière, that these maps satisfy a system with an antisymmetric potential, from which one can derive the interior regularity of the solution. Avoiding a reflection argument, we show that these maps satisfy along the boundary a system of equations which also exhibits a (nonlocal) antisymmetric potential that combines information from the interior potential and the geometric Neumann boundary condition. We then proceed to show boundary regularity for solutions to such systems.

## References

1. 1.
Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42(4), 765–778 (1975)
2. 2.
Bethuel, F.: Un résultat de régularité pour les solutions de l’équation de surfaces à courbure moyenne prescrite. C. R. Acad. Sci. Paris Sér. I Math. 314(13), 1003–1007 (1992)
3. 3.
Blatt, S.; Reiter, Ph; Schikorra, A.: Harmonic analysis meets critical knots. Critical points of the Möbius energy are smooth. Trans. Am. Math. Soc. 368(9), 6391–6438 (2016)
4. 4.
Bojarski, B.; Hajłasz, P.: Pointwise inequalities for Sobolev functions and some applications. Stud. Math. 106(1), 77–92 (1993)
5. 5.
Brezis, H.; Coron, J.-M.: Multiple solutions of $$H$$-systems and Rellich’s conjecture. Commun. Pure Appl. Math. 37(2), 149–187 (1984)
6. 6.
Brezis, H., Nirenberg, L.: Degree theory and BMO. II. Compact manifolds with boundaries. Sel. Math. (N.S.) 2(3), 309–368 (1996). With an appendix by the authors and Petru MironescuGoogle Scholar
7. 7.
Chanillo, S.: A note on commutators. Indiana Univ. Math. J. 31(1), 7–16 (1982)
8. 8.
Chen, Y.; Ding, Y.: Commutators of Littlewood-Paley operators. Sci. China Ser. A 52(11), 2493–2505 (2009)
9. 9.
Choné, Ph: A regularity result for critical points of conformally invariant functionals. Potential Anal. 4(3), 269–296 (1995)
10. 10.
Coifman, R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9) 72(3), 247–286 (1993)Google Scholar
11. 11.
Coifman, R.R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. of Math. (2) 103(3), 611–635 (1976)Google Scholar
12. 12.
Da Lio, F.: Fractional harmonic maps into manifolds in odd dimension $$n > 1$$. Calc. Var. Partial Differ. Equ. 48(3–4), 421–445 (2013)
13. 13.
Da Lio, F.: Compactness and bubble analysis for 1/2-harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(1), 201–224 (2015)
14. 14.
Lio, Da: F., Rivière, T.: Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps. Adv. Math. 227(3), 1300–1348 (2011)Google Scholar
15. 15.
Da Lio, F.; Rivière, T.: Three-term commutator estimates and the regularity of $$\frac{1}{2}$$-harmonic maps into spheres. Anal. PDE 4(1), 149–190 (2011)
16. 16.
Da Lio, F., Rivière, T.: Horizontal $$\alpha$$-harmonic maps, Preprint, arXiv:1604.05461 (2016)
17. 17.
Da Lio, F.; Schikorra, A.: $$n/p$$-harmonic maps: regularity for the sphere case. Adv. Calc. Var. 7(1), 1–26 (2014)
18. 18.
Douglas, J.: Solution of the problem of Plateau. Trans. Am. Math. Soc. 33(1), 263–321 (1931)
19. 19.
Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies, Vol. 105. Princeton University Press, Princeton, 1983Google Scholar
20. 20.
Goldstein, P., Zatorska-Goldstein, A.: Remarks on Uhlenbeck’s decomposition theorem, Preprint, arXiv:1704.03550 (2017)
21. 21.
Grafakos, L.: Classical Fourier Analysis, Graduate Texts in Mathematics, 3rd edn., Vol. 249. Springer, New York, 2014Google Scholar
22. 22.
Grüter, M.: Conformally invariant variational integrals and the removability of isolated singularities. Manuscr. Math. 47(1–3), 85–104 (1984)
23. 23.
Grüter, M.; Hildebrandt, S.; Nitsche, J.C.C.: Regularity for stationary surfaces of constant mean curvature with free boundaries. Acta Math. 156(1–2), 119–152 (1986)
24. 24.
Guliyev, V.; Omarova, M.; Sawano, Y.: Boundedness of intrinsic square functions and their commutators on generalized weighted Orlicz-Morrey spaces. Banach J. Math. Anal. 9(2), 44–62 (2015)
25. 25.
Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5(4), 403–415 (1996)
26. 26.
Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une sphère. C. R. Acad. Sci. Paris Sér. I Math. 311(9), 519–524 (1990)
27. 27.
Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. C. R. Acad. Sci. Paris Sér. I Math. 312(8), 591–596 (1991)
28. 28.
Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames, Cambridge Tracts in Mathematics, 2nd edn., Vol. 150. Cambridge University Press, Cambridge, 2002. Translated from the 1996 French original, With a foreword by James EellsGoogle Scholar
29. 29.
Iwaniec, T.; Martin, G.: Riesz transforms and related singular integrals. J. Reine Angew. Math. 473, 25–57 (1996)
30. 30.
Lamm, T.; Rivière, T.: Conservation laws for fourth order systems in four dimensions. Comm. Partial Differ. Equ. 33(1–3), 245–262 (2008)
31. 31.
Lenzmann, E., Schikorra, A.: Sharp commutator estimates via harmonic extension, Preprint, arxiv:1609.08547 (2016)
32. 32.
Maalaoui, A.; Martinazzi, L.; Schikorra, A.: Blow-up behavior of a fractional Adams-Moser-Trudinger-type inequality in odd dimension. Commun. Partial Differ. Equ. 41(10), 1593–1618 (2016)
33. 33.
Mazowiecka, K., Schikorra, A.: Fractional div-curl quantities and applications to nonlocal geometric equations, arXiv: 1703.00231 (2017)
34. 34.
Millot, V.; Sire, Y.: On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres. Arch. Ration. Mech. Anal. 215(1), 125–210 (2015)
35. 35.
Moser, R.: An $$L^p$$ regularity theory for harmonic maps. Trans. Am. Math. Soc. 367(1), 1–30 (2015)
36. 36.
Müller, F.: On stable surfaces of prescribed mean curvature with partially free boundaries. Calc. Var. Partial Differ. Equ. 24(3), 289–308 (2005)
37. 37.
Müller, F.; Schikorra, A.: Boundary regularity via Uhlenbeck-Rivière decomposition. Analysis (Munich) 29(2), 199–220 (2009)
38. 38.
Müller, S.: Higher integrability of determinants and weak convergence in $$L^1$$. J. Reine Angew. Math. 412, 20–34 (1990)
39. 39.
Reshetnyak, Y.G.: On the stability of conformal mappings in multidimensional spaces. Sib. Math. J. 8, 65–85 (1967)Google Scholar
40. 40.
Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168(1), 1–22 (2007)
41. 41.
Rivière, T.: Sub-criticality of Schrödinger systems with antisymmetric potentials. J. Math. Pures Appl. (9) 95(3), 260–276 (2011)Google Scholar
42. 42.
Rivière, T.; Struwe, M.: Partial regularity for harmonic maps and related problems. Commun. Pure Appl. Math. 61(4), 451–463 (2008)
43. 43.
Scheven, C.: Partial regularity for stationary harmonic maps at a free boundary. Math. Z. 253(1), 135–157 (2006)
44. 44.
Schikorra, A.: A remark on gauge transformations and the moving frame method. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(2), 503–515 (2010)
45. 45.
Schikorra, A.: Interior and boundary-regularity for fractional harmonic maps on domains, unpublished. arXiv:1103.5203 (2011)
46. 46.
Schikorra, A.: Regularity of $$n/2$$-harmonic maps into spheres. J. Differ. Equ. 252(2), 1862–1911 (2012)
47. 47.
Schikorra, A.: $$\varepsilon$$-regularity for systems involving non-local, antisymmetric operators. Calc. Var. Partial Differ. Equ. 54(4), 3531–3570 (2015)
48. 48.
Semmes, S.: A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller. Comm. Partial Differ. Equ. 19(1–2), 277–319 (1994)
49. 49.
Sharp, B.; Topping, P.: Decay estimates for Rivière’s equation, with applications to regularity and compactness. Trans. Am. Math. Soc. 365(5), 2317–2339 (2013)
50. 50.
Sharp, B., Zhu, M.: Regularity at the free boundary for Dirac-harmonic maps from surfaces. Calc. Var. Partial Differ. Equ. 55(2), Art. 27, 30 (2016)Google Scholar
51. 51.
Shatah, J.: Weak solutions and development of singularities of the $${{\rm SU}}(2)$$ $$\sigma$$-model. Commun. Pure Appl. Math. 41(4), 459–469 (1988)
52. 52.
Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, 1970Google Scholar
53. 53.
Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, Vol. 43. Princeton University Press, Princeton, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, IIIGoogle Scholar
54. 54.
Tartar, L.: The Compensated Compactness Method Applied to Systems of Conservation Laws, Systems of Nonlinear Partial Differential Equations (Oxford, 1982), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Vol. 111. Reidel, Dordrecht, 1983, pp. 263–285Google Scholar
55. 55.
Tomi, F.: Ein einfacher Beweis eines Regularitässatzes für schwache Lösungen gewisser elliptischer Systeme. Math. Z. 112, 214–218 (1969)
56. 56.
Torchinsky, A, Wang, S.L.: A note on the Marcinkiewicz integral. Colloq. Math. 60/61(1), 235–243 (1990)Google Scholar
57. 57.
Uhlenbeck, K.K.: Connections with $$L^{p}$$ bounds on curvature. Commun. Math. Phys. 83(1), 31–42 (1982)
58. 58.
Wente, H.C.: An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl. 26, 318–344 (1969)