Skip to main content

Advertisement

Log in

Doubling Inequality and Nodal Sets for Solutions of Bi-Laplace Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We investigate the doubling inequality and nodal sets for the solutions of bi-Laplace equations. A polynomial upper bound for the nodal sets of solutions and their gradient is obtained based on the recent development of nodal sets for Laplace eigenfunctions by Logunov. In addition, we derive an implicit upper bound for the nodal sets of solutions. We show two types of doubling inequalities for the solutions of bi-Laplace equations. As a consequence, the rate of vanishing is given for the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn, N., Krzywicki, A., Szarski, J.: A unique continuation theorem for exterior differential forms on Riemannian manifolds. Ark. Mat. 4, 417–453 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alessandrini, G., Morassi, A., Rosset, E., Vessella, S.: On doubling inequalities for elliptic systems. J. Math. Anal. App. 357(2), 349–355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alessandrini, G., Rondi, L., Rosset, E., Vessella, S.: The stability for the Cauchy problem for elliptic equations. Inverse Probl. 25(12), 123004 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bakri, L.: Carleman estimates for the Schrödinger Operator. Application to quantitative uniqueness. Commun. Partial Differ. Equ. 38, 69–91 2013)

  5. Brüning, J.: Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators. Math. Z. 158, 15–21 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J., Kenig, C.: On localization in the continuous Anderson-Bernoulli model in higher dimension. Invent. Math. 161(2), 389–426 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bellová, K., Lin, F.-H.: Nodal sets of Steklov eigenfunctions. Calc. Var. Partial Differ. Equ. 54(2), 2239–2268 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colding, T.H., Minicozzi II, W.P.: Lower bounds for nodal sets of eigenfunctions. Commun. Math. Phys. 306, 777–784 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Dong, R.-T.: Nodal sets of eigenfunctions on Riemann surfaces. J. Differ. Geom. 36, 493–506 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93(1), 161–183 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Donnelly, H., Fefferman, C.: Nodal sets for eigenfunctions of the Laplacian on surfaces. J. Am. Math. Soc. 3(2), 333–353 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Escauriaza, L., Vessella, S.: Optimal Three Cylinder Inequalities for Solutions to Parabolic Equations with Lipschitz Leading Coefficients. Inverse Problems: Theory and Applications (Cortona/Pisa, 2002), Contemporary Mathematics, vol. 333, pp. 79–87. American Mathematical Society, Providence (2003)

  13. Federer, H.: Geometric Measure Theory. Spring, New York (1969)

    MATH  Google Scholar 

  14. Garofalo, N., Lin, F.-H.: Monotonicity properties of variational integrals, \(A_p\) weights and unique continuation. Indiana Univ. Math. 35, 245–268 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garofalo, N., Lin, F.-H.: Unique continuation for elliptic operators: a geometric-variational approach. Commun. Pure Appl. Math. 40, 347–366 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Georgiev, B., Roy-Fortin, G.: Polynomial upper bound on interior Steklov nodal sets. arXiv:1704.04484

  17. Han, Q.: Schauder estimates for elliptic operators with applications to nodal sets. J. Geom. Anal. 10, 455–480 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hörmander, L.: Uniqueness theorems for second order elliptic differential equations. Commun. Partial Differ. Equ. 8, 21–64 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. 3. Springer, Berlin (1985)

    MATH  Google Scholar 

  20. Han, Q., Hardt, R., Lin, F.-H.: Geometric measure of singular sets of elliptic equations. Commun. Pure Appl. Math. 51, 1425–1443 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Han, Q., Hardt, R., Lin, F.-H.: Singular sets of higher order elliptic equations. Commun. Partial Differ. Equ. 28(11–12), 2045–2063 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Han, Q., Lin, F.-H.: Nodal Sets of Solutions of Elliptic Differential Equations. Book in preparation (online at http://www.nd.edu/qhan/nodal.pdf)

  23. Han, Q., Lin, F.-H.: On the geometric measure of nodal sets of solutions. J. Part. Differ. Equ. 7, 111–131 (1994)

    MathSciNet  MATH  Google Scholar 

  24. Han, Q., Lin, F.-H.: Rank zero and rank one sets of harmonic maps. Cathleen Morawetz: a great mathematician. Methods Appl. Anal. 7(2), 417–442 (2000)

  25. Hardt, R., Simon, L.: Nodal sets for solutions of ellipitc equations. J. Differ. Geom. 30, 505–522 (1989)

    Article  MATH  Google Scholar 

  26. Hezari, H., Sogge, C.D.: A natural lower bound for the size of nodal sets. Anal. PDE 5(5), 1133–1137 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jerison, D., Lebeau, G.: Nodal Sets of Sums of Eigenfunctins, Harmonic Analysis and Partial Differential Equations (Chicago, IL, 1996). Chicago Lectures in Mathematics, pp. 223–239. University of Chicago Press, Chicago (1999)

  28. Kenig, C.: Some recent applications of unique continuation. In: Recent Developments in Nonlinear Partial Differential Equations. Volume 439 of Contemporary Mathematics, pp. 25–56. American Mathematical Society, Providence (2007)

  29. Kukavica, I.: Nodal volumes of eigenfuncgtions of analytic regular elliptic problem. J. d'Anal. Math. 67(1), 269–280 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kenig, C., Silvestre, L., Wang, J.-N.: On Landis' conjecture in the plane. Commun. Partial Differ. Equ. 40, 766–789 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin, F.-H.: Nodal sets of solutions of elliptic equations of elliptic and parabolic equations. Commun. Pure Appl Math. 44, 287–308 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Logunov, A.: Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure. Ann. Math. 187, 221–239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Logunov, A.: Nodal sets of Laplace eigenfunctions: proof of Nadirashvili's conjecture and of the lower bound in Yau's conjecture. Ann. Math. 187, 241–262 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Logunov, A., Malinnikova, E.: Nodal Sets of Laplace Eigenfunctions: Estimates of the Hausdorff Measure in Dimension Two and Three, 50 Years with Hardy Spaces. Operator Theory: Advances and Applications, vol. 261, pp. 333-344. Birkhuser/Springer, Cham (2018)

  35. Lebeau, G., Robbiano, L.: Contrôle exacte de l'équation de la chaleur. Commun. Partial Differ. Equ. 20, 335–356 (1995)

    Article  MATH  Google Scholar 

  36. Mangoubi, D.: A remark on recent lower bounds for nodal sets. Commun. Partial Differ. Equ. 36(12), 2208–2212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Meshkov, V.Z.: On the possible rate of decay at infinity of solutions of second order partial differential equations. Math. USSR SB 72, 343–361 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Steinerberger, S.: Lower bounds on nodal sets of eigenfunctions via the heat flow. Commun. Partial Differ. Equ. 39(12), 2240–2261 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sogge, C.D., Zelditch, S.: Lower bounds on the Hausdorff measure of nodal sets. Math. Res. Lett. 18, 25–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yau, S.T.: Problem Section, Seminar on Differential Geometry. Annals of Mathematical Studies, Princeton 102, 669–706 (1982)

    Google Scholar 

  41. Yomdin, Y.: the set of zeros of an almost polynomial functions. Proc. Am. Math. Soc. 90, 538–542 (1984)

    MATH  Google Scholar 

  42. Zhu, J.: Quantitative unique continuation of solutions to higher order elliptic equations with singular coefficients. Calc. Var. Partial Differ. Equ. 57(2), Art. 58, 35

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuyi Zhu.

Additional information

Communicated by F. Lin

Zhu is supported in part by NSF grant DMS-1656845 and OIA-1832961

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J. Doubling Inequality and Nodal Sets for Solutions of Bi-Laplace Equations. Arch Rational Mech Anal 232, 1543–1595 (2019). https://doi.org/10.1007/s00205-018-01349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-01349-2

Navigation