Advertisement

Archive for Rational Mechanics and Analysis

, Volume 232, Issue 2, pp 1113–1163 | Cite as

Analysis of Diffusion Generated Motion for Mean Curvature Flow in Codimension Two: A Gradient-Flow Approach

  • Tim LauxEmail author
  • Nung Kwan Yip
Article
  • 61 Downloads

Abstract

The Merriman–Bence–Osher (MBO) scheme, also known as diffusion generated motion or thresholding, is an efficient numerical algorithm for computing mean curvature flow (MCF). It is fairly well understood in the case of hypersurfaces. This paper establishes the first convergence proof of the scheme in codimension two. We concentrate on the case of the curvature motion of a filament (curve) in \({{\mathbb{R}}^3}\). Our proof is based on a new generalization of the minimizing movements interpretation for hypersurfaces (Esedoglu–Otto ’15) by means of an energy that approximates the Dirichlet energy of the state function. As long as a smooth MCF exists, we establish uniform energy estimates for the approximations away from the smooth solution and prove convergence towards this MCF. The current result that holds in codimension two relies in a very crucial manner on a new sharp monotonicity formula for the thresholding energy. This is an improvement of an earlier approximate version.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank Selim Esedoglu, Felix Otto, and Drew Swartz for useful discussion. The support by the Purdue Research Foundation and the hospitality of the Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany, are highly noted.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)Google Scholar
  2. 2.
    Almgren, F., Taylor, J.E., Wang, L.: Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31(2), 387–438 (1993)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Altschuler, S.J., Grayson, M.A.: Shortening space curves and flow through singularities. J. Differ. Geom. 35(2), 283–298 (1992)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser, 2008Google Scholar
  5. 5.
    Ambrosio, L., Soner, H.M.: Level set approach to mean curvature flow in arbitrary codimension. J. Differ. Geom. 43, 693–737 (1996)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ambrosio, L., Soner, H.M.: A measure-theoretic approach to higher codimension mean curvature flows. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV. 25(1–2), 27–49 (1997)Google Scholar
  7. 7.
    Barles, G., Georgelin, C.: A simple proof of convergence for an approximation scheme for computing motions by mean curvature. SIAM J. Numer. Anal. 32(2), 484–500 (1995)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser Boston Inc, Boston, MA (1994)Google Scholar
  9. 9.
    Bethuel, F., Orlandi, G., Smets, D.: Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature. Ann. Math. 163(1), 37–163 (2006)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bonnetier, E., Bretin, E., Chambolle, A.: Consistency result for a non monotone scheme for anisotropic mean curvature flow. Interfaces Free Bound. 14(1), 1–35 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Brakke, K.A.: The motion of a surface by Its Mean Curvature, vol. 20. Princeton University Press, Princeton (1978)zbMATHGoogle Scholar
  12. 12.
    Bronsard, L., Kohn, R.V.: Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differ. Equ. 90(2), 211–237 (1991)ADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Chen, X.: Generation and propagation of interfaces for reaction-diffusion equations. J. Differ. Equ. 96, 116–141 (1992)ADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33(3), 749–786 (1991)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Chen, Y.: The weak solutions to the evolution problems of harmonic maps. Math. Z. 201(1), 69–74 (1989)MathSciNetzbMATHGoogle Scholar
  16. 16.
    De Giorgi, E.: New problems on minimizing movements. Bound. Value Probl. PDE Appl. 29, 91–98 (1993)MathSciNetzbMATHGoogle Scholar
  17. 17.
    De Giorgi, E.: Barriers, boundaries, motion of manifolds. Conference proceedings of Department of Mathematics of Pavia, Vol. 18, 1994Google Scholar
  18. 18.
    De Mottoni, P., Schatzman, M.: Geometrical evolution of developed interfaces. Trans. Am. Math. Soc. 347(5), 1533–1589 (1995)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Elsey, M., Esedoğlu, S.: Threshold dynamics for anisotropic surface energies. Technical report, UM (2016)zbMATHGoogle Scholar
  20. 20.
    Esedoğlu, S., Otto, F.: Threshold dynamics for networks with arbitrary surface tensions. Commun. Pure Appl. Math. 68(5), 808–864 (2015)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. Number 74. American Mathematical Soc., 1990Google Scholar
  22. 22.
    Evans, L.C.: Convergence of an algorithm for mean curvature motion. Indiana Univ. Math. J. 42(2), 533–557 (1993)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45(9), 1097–1123 (1992)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Evans, L.C., Spruck, J.: Motion of level sets by mean curvature I. J. Differ. Geom. 33(3), 635–681 (1991)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23(1), 69–96 (1986)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces. In: Calculus of variations and geometric evolution problems (Cetraro, 1996), volume 1713 of Lecture Notes in Math., pp. 45–84. Springer, Berlin, 1999Google Scholar
  27. 27.
    Ilmanen, T.: Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature. J. Differ. Geom. 38(2), 417–461 (1993)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Ishii, H.: A generalization of the Bence, Merriman and Osher algorithm for motion by mean curvature. In: Curvature flows and related topics (Levico, 1994), volume 5 of GAKUTO Internat. Ser. Math. Sci. Appl., pp. 111–127. Gakkōtosho, Tokyo, 1995Google Scholar
  29. 29.
    Ishii, H., Pires, G.E., Souganidis, P.E.: Threshold dynamics type approximation schemes for propagating fronts. J. Math. Soc. Jpn. 51(2), 267–308 (1999)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Jerrard, R.L.: Quantized vortex filaments in complex scalar fields. In: Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, pp. 789–810. Kyung Moon Sa, Seoul, 2014Google Scholar
  31. 31.
    Jerrard, R.L., Soner, H.M.: Scaling limits and regularity results for a class of Ginzburg-Landau systems. Ann. Inst. H. Poincaré Anal. Non Linéaire. 16(4), 423–466 (1999)Google Scholar
  32. 32.
    Laux, T., Otto, F.: Convergence of the thresholding scheme for multi-phase mean-curvature flow. Calc. Var. Partial Differ. Equ. 55(5), 1–74 (2016)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Laux, T., Otto, F.: Brakke's inequality for the thresholding scheme (2017). arXiv prerpint arXiv:1708.03071
  34. 34.
    Laux, T., Simon, T.: Convergence of the Allen–Cahn equation to multiphase mean curvature flow. To appear in Commun. Pure Appl. Math. (2018).  https://doi.org/10.1002/cpa.21747
  35. 35.
    Laux, T., Swartz, D.: Convergence of thresholding schemes incorporating bulk effects. Interfaces Free Bound. 55(2), 273–304 (2017)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Lin, F.: Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds. Commun. Pure Appl. Math. 51(4), 385–441 (1998)MathSciNetGoogle Scholar
  37. 37.
    Lin, F., Pan, X.-B., Wang, C.: Phase transition for potentials of high-dimensional wells. Commun. Pure Appl. Math. 65(6), 833–888 (2012)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Luckhaus, S., Sturzenhecker, T.: Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differ. Equ. 3(2), 253–271 (1995)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Merriman, B., Bence, J.K., Osher, S.J.: Diffusion generated motion by mean curvature. CAM Report, pp. 92–18. Department of Mathematics, University of California, Los Angeles, 1992Google Scholar
  40. 40.
    Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994)ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Osting, B., Wang, D.: A generalized MBO diffusion generated motion for orthogonal matrix-valued fields (2017). arXiv preprint prerpint arXiv:1711.01365
  42. 42.
    Pismen, L.M., Rubinstein, J.: Motion of vortex lines in the Ginzburg-Landau model. Phys. D. Nonlinear Phenom. 47(3), 353–360 (1991)ADSMathSciNetzbMATHGoogle Scholar
  43. 43.
    Rubinstein, J.: Self-induced motion of line defects. Q. Appl. Math. 49(1), 1–9 (1991)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Rubinstein, J., Sternberg, P., Keller, J.B.: Fast reaction, slow diffusion, and curve shortening. SIAM J. Appl. Math. 49(1), 116–133 (1989)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Rubinstein, J., Sternberg, P., Keller, J.B.: Reaction-diffusion processes and evolution to harmonic maps. SIAM J. ApplMath. 49(6), 1722–1733 (1989)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Ruuth, S.J., Merriman, B., Xin, J., Osher, S.: Diffusion-generated motion by mean curvature for filaments. J. Nonlinear ci. 11(6), 473–493 (2001)ADSMathSciNetzbMATHGoogle Scholar
  47. 47.
    Sandier, E., Serfaty, S.: Vortices in the magnetic Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, vol. 70. Birkhäuser Boston Inc, Boston, MA (2007)Google Scholar
  48. 48.
    Soner, H.M.: Front propagation. Boundaries, interfaces, and transitions (Banff, AB, 1995), volume 13 of CRM Proc. Lecture Notes, pp. 185–206. Amer. Math. Soc, Providence, RI (1998)Google Scholar
  49. 49.
    Swartz, D., Yip, N.K.: Convergence of diffusion generated motion to motion by mean curvature. Commun. Partial Differ. Equ. 42(10), 1598–1643 (2017)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Wang, M.-T.: Long-time existence and convergence of graphic mean curvature flow in arbitrary codimension. Invent. Math. 148(3), 525–543 (2002)ADSMathSciNetzbMATHGoogle Scholar
  51. 51.
    Wang, M.-T.: Mean curvature flows in higher codimension. In: Second International Congress of Chinese Mathematicians, volume  4 of New Stud. Adv. Math., pp. 275–283. Int. Press, Somerville, MA, 2004Google Scholar
  52. 52.
    Wang, M.-T.: Lectures on mean curvature flows in higher codimensions. In: Handbook of Geometric Analysis. No. 1, Volume 7 of Adv. Lect. Math. (ALM), pp. 525–543. Int. Press, Somerville, MA, 2008Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations