Skip to main content
Log in

Incompressible Jet Flows in a de Laval Nozzle with Smooth Detachment

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the well-posedness theory of steady incompressible jet flow in a de Laval type nozzle with given end pressure at the outlet. The main results show that for any given incoming mass flux Q > 0 in the upstream and end pressure at the outlet, there exists an admissible interval to the Bernoulli’s constant, if the Bernoulli’s constant lies in the interval, there exists a unique smooth incompressible jet flow issuing from the nozzle. Moreover, the free boundary of the jet flow initiates smoothly from the surface of the divergent area of the de Laval nozzle. In particular, it is shown that the initial point of the free boundary lies behind the throat of the de Laval nozzle wall and varies continuously and monotonically with respect to the Bernoulli’s constant. As a direct corollary, imposing initial point of the free boundary on the divergent part of nozzle wall, there exists a unique incompressible jet for given incoming mass flux Q > 0 and pressure Pe at the outlet. This work is inspired by the significant works (Alt et al. in Commun Pure Appl Math 35:29–68, 1982; Arch Rational Mech Anal 81:97–149, 1983) for the incompressible jet flow imposing the initial point of the free boundary at the endpoint of the nozzle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Alt, H.W., Caffarelli, L.A., Friedman, A.: Asymmetric jet flows. Commun. Pure Appl. Math. 35, 29–68 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alt, H.W., Caffarelli, L.A., Friedman, A.: Jet flows with gravity. J. Reine Angew. Math. 35, 58–103 (1982)

    MathSciNet  MATH  Google Scholar 

  4. Alt, H.W., Caffarelli, L.A., Friedman, A.: Axially symmetric jet flows. Arch. Rational Mech. Anal. 81, 97–149 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Alt, H.W., Caffarelli, L.A., Friedman, A.: Variational problems with two phases and their free boundaries. Trans. Am. Math. Soc. 282, 431–461 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alt, H.W., Caffarelli, L.A., Friedman, A.: Jets with two fluids. I. One free boundary. Indiana Univ. Math. J. 33, 213–247 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alt, H.W., Caffarelli, L.A., Friedman, A.: Jets with two fluids. II. Two free boundaries. Indiana Univ. Math. J. 33, 367–391 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Alt, H.W., Caffarelli, L.A., Friedman, A.: Compressible flows of jets and cavities. J. Differ. Equ. 56, 82–141 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bae, M., Feldman, M.: Transonic shocks in muultidimensional divergent nozzles. Arch. Rational Mech. Anal. 201, 777–841 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Birkhoff, G., Zarantonello, E.H.: Jets, Wakes and Cavities. Academic Press, New York (1957)

    MATH  Google Scholar 

  11. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Interscience Publishers Inc, New York (1948)

    MATH  Google Scholar 

  12. Chen, G.-Q., Dafermos, C., Slemrod, M., Wang, D.: On two-dimensional sonic-subsonic flow. Commun. Math. Phys. 271, 635–647 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chen, G.-Q., Deng, X., Xiang, W.: Global steady subsonic flows through infinitely long nozzles for the full Euler equations SIAM. J. Math. Anal. 44, 2888–2919 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Chen, G.-Q., Feldman, M.: Steady transonic shocks and free boundary problems for the Euler equations in infinite cylinders. Commun. Pure Appl. Math. 57, 310–356 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, G.-Q., Huang, F., Wang, T.: Sonic-subsonic limit of approximate solutions to multidimensional steady Euler equations. Arch. Rational Mech. Anal. 219, 719–740 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Cheng, J.F., Du, L.L., Xiang, W.: Incompressible Réthy flows in two-dimensions SIAM. J. Math. Anal. 49(5), 3427–3475 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Du, L.L., Xie, C.J., Xin, Z.P.: Steady subsonic ideal flows through an infinitely long nozzle with large vorticity. Comm. Math. Phys. 328, 327–354 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Du, L.L., Xin, Z.P., Yan, W.: Subsonic flows in a multi-dimensional nozzle. Arch. Rational Mech. Anal. 201, 965–1012 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Finn, R.: Some theorems on discontinuous plane fluid motions. J. Analyse Math. 4, 246–291 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  20. Friedman, A.: Variational Principles and Free-Boundary Problems. Pure and Applied Mathematics. John Wiley Sons Inc, New York (1982)

    MATH  Google Scholar 

  21. Friedman, A., Vogel, T.I.: Cavitational flow in a channel with oscillatory wall. Nonlinear Anal. 7, 1175–1192 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garabedian, P.R., Lewy, H., Schiffer, M.: Axially symmetric cavitational flow. Ann. Math. 56, 560–602 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gilbarg, D.: Uniqueness of axially symmetric flows with free boundaries. J. Rational Mech. Anal. 1, 309–320 (1952)

    MathSciNet  MATH  Google Scholar 

  24. Gilbarg, D.: Jets and Cavities, Handbuch der Physik, Vol. 9, Part 3 pp. 311–445. Springer, Berlin (1960)

  25. Gurevich, M.I.: Theory of Jets in Ideal Fluids. Academic Press, New York (1965)

    MATH  Google Scholar 

  26. Kuz'min, A.G.: Boundary Value Problems for Transonic Flow. West Sussex., UK, John Wiley Sons (2002)

    Google Scholar 

  27. Lavrentieff, M.: Sur certaines propriétés des fonctions univalentes et leurs applications a la théorie des sillages Matematicheskii. Sbornik 46, 391–458 (1938)

    MATH  Google Scholar 

  28. Leray, J.: Les problems de representation conforme d'helmholz, theories des sillages et des proues, I. II. Comment Math. Helv 8(149–180), 250–263 (1935)

    Article  MATH  Google Scholar 

  29. Leray, J., Weinstein, A.: Sur un probléme de représentation conforme pose par la théorie de Helmholtz. C. R. Acad. Sci. Paris 198, 430–433 (1934)

    MATH  Google Scholar 

  30. Li, J., Xin, Z.P., Yin, H.C.: On transonic shocks in a nozzle with variable end pressures. Commun. Math. Phys. 291, 111–150 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Li, J., Xin, Z.P., Yin, H.C.: A free boundary value problem for the full Euler system and 2-D transonic shock in a large variable nozzle. Math. Res. Lett. 16, 777–796 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Li, J., Xin, Z.P., Yin, H.C.: Transonic shocks for the full compressible Euler system in a general two-dimensional de Laval nozzle. Arch. Ration. Mech. Anal. 207, 533–581 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Milne-Thomson, L.M.: Theoretical Hydrodynamics, 5th, edn. edn. Macmillan (1968)

  34. Villat, H.: Sur la validité des solutions de certains problèmes d'Hydrodynamique. J. Math. Pures Appl. 10(6), 231–290 (1914)

    MATH  Google Scholar 

  35. Weinstein, A.: Ein Hydrodynamischer Unitätssatz. Math. Z. 19, 265–274 (1924)

    Google Scholar 

  36. Wu, T.Y.: Cavity and wakes flows. Annu. Rev. Fluid Mech. 4, 243–284 (1972)

    Article  ADS  Google Scholar 

  37. Xie, C.J., Xin, Z.P.: Global subsonic and subsonic-sonic flows through infinitely long axially symmetric nozzles. J. Differ. Equ. 248, 2657–2683 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Xin, Z.P., Yin, H.C.: The transonic shock in a nozzle, 2-D and 3-D complete Euler systems. J. Differ. Equ. 245, 1014–1085 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Yuan, H.: On transonic shocks in two-dimensional variable-area ducts for steady Euler system. SIAM J. Math. Anal. 38, 1343–1370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Du.

Additional information

Communicated by A. Figalli

Cheng and Du are supported in part by NSFC Grant 11571243 and 11622105. Xiang is supported by the Research Grants Council of the HKSAR, China (Project Nos. CityU 21305215, CityU 11332916, CityU 11304817 and CityU 11303518).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Du, L. & Xiang, W. Incompressible Jet Flows in a de Laval Nozzle with Smooth Detachment. Arch Rational Mech Anal 232, 1031–1072 (2019). https://doi.org/10.1007/s00205-018-01338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-01338-5

Navigation