Skip to main content
Log in

Finite-Energy Solutions for Compressible Two-Fluid Stokes System

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove the existence of global in time weak solutions to a compressible two-fluid Stokes system with a single velocity field and algebraic closure for the pressure law. The constitutive relation involves densities of both fluids through an implicit function. The system appears to be outside the class of problems that can be treated using the classical Lions–Feireisl approach. Adapting the novel compactness tool developed by the first author and P.-E. Jabin in the mono-fluid compressible Navier–Stokes setting, we first prove the weak sequential stability of solutions. Next, we construct weak solutions via an unconventional approximation using the Lagrangian formulation, truncations, and a stability result of trajectories for rough velocity fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amosov, A.A., Zlotnik, A.A.: On the error of quasi-averaging of the equations of motion of a viscous barotoropic medium with rapidly oscillating data. Comput. Maths Phys. 36(10), 1415–1428 (1996)

    MATH  Google Scholar 

  2. Ben Belgacem, F., Jabin, P.-E.: Compactness for nonlinear continuity equations. J. Funct. Anal. 264(1), 139–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bresch, D., Desjardins, B., Ghidaglia, J.-M., Grenier, E.: On Global weak Solutions to a generic two-fluid model. Arch. Ration. Mech. Anal. 196(2), 599–629 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bresch, D., Desjardins, B., Ghidaglia, J.-M., Grenier, E., Hilliairet, M.: In: Giga, Y., Novotný, A. (eds.), pp. 1–52(2017)

  5. Bresch, D., Hillairet, M.: Note on the derivation of multicomponent flow systems. Proc. AMS 143, 3429–3443 (2015)

    Article  MATH  Google Scholar 

  6. Bresch, D., Hillairet, M.: A compressible multifluid system with new physical relaxation terms. To appear in Ann. Ecole Normale, Sup (2017)

    Google Scholar 

  7. Bresch, D., Huang, X.: A multi-fluid compressible system as the limit of weak solutions of the isentropic compressible Navier-Stokes equations. Arch. Ration. Mech. Anal. 201(2), 647–680 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bresch, D., Huang, X., Li, J.: A global weak solution to a one-dimensional non-conservative viscous compressible two-phase system. Commun. Math. Phys. 309(3), 737–755 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bresch, D., Jabin, P.-E.: Global existence of weak solutions for compresssible Navier-Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor. Ann. Math. 188(2), 577–684 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bresch, D., Jabin, P.-E.: Global weak solutions of PDEs for compressible media: a compactness criterion to cover new physical situations. Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics, Springer INdAM 17, 33–54 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bresch, D., Jabin, P.-E.: Quantitative regularity estimates for advective equation with anelastic degenerate constraint. Proc, ICM Rio de Janeiro (2018)

    Google Scholar 

  12. Colombo, M., Crippa, G., Spirito, S.: Renormalized solutions to the continuity equation with an integrable damping term. Calc. Var. PDEs 54(2), 1831–1845 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crippa, G., De Lellis, C.: Estimates and regularity results for the DiPerna-Lions flows. J. Für Die Reine Und Angewandte Mathematik 616, 15–46 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Degond, P., Minakowski, P., Zatorska, E.: Transport of congestion in two-phase compressible/incompressible flows with. Nonlinear Anal. Real World Appl. 42, 485–510 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Degond, P., Minakowski, P., Navoret, L., Zatorska, E.: Finite Volume approximations of the Euler system with variable congestion. Comput. Fluids 169(30), 23–39 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Desvillettes, L.: Some Aspects of the Modeling at Different Scales of Multiphase Flows. Comput. Methods Appl. Mech. Eng. 199, 1265–1267 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Dias, F., Dutykh, D., Ghidaglia, J.-M.: A two-fluid model for violent aerated flows. Comput. Fluids 39(2), 283–293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. DiPerna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Drew, D., Passman, S.L.: Theory of multicomponent fluids. Applied Math Sciences, 1999

  20. Evje, S.: An integrative multiphase model for cancer cell migration under influence of physical cues from the tumor microenvrionment. Chem Engineering Science, 204–259, 2017

  21. Evje, S., Karlsen, K.H.: Global existence of weak solutions for a viscous two-phase model. J. Differ. Equ. 245(9), 2660–2703 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Evje, S., Wen, H.: Analysis of a compressible two-fluid stokes system with constant viscosity. J. Math. Fluid Mech. 17(3), 423–436 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Evje, S., Wen, H.: Stability of a compressible two-fluid hyperbolic-elliptic system arising in fluid mechanics. Nonlinear Anal. Real World Appl. 31, 610–629 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Evje, S., Wen, H., Yao, L.: Global solutions to a one-dimensional non-conservative two-phase model. Discrete Contin. Dyn. Syst. 36(4), 1927–1955 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feireisl, E.: On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolin 42(1), 83–98 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Feireisl, E., Klein, R., Novotný, A., Zatorska, E.: On singular limits arising in the scale analysis of stratified fluid flows. Math. Models Methods Appl. Sci. 26(3), 419–443 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hao, C.C., Li, H.L.: Well-posedness for a multidimensional viscous liquid-gas flow model. SIAM J. Math. Anal. 44(3), 1304–1332 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ishii, M., Hibiki, T.: Thermo-fluid dynamics of two-phase flow. Springer (2006)

  29. Jabin, P.-E.: Differential Equations with singular fields. Journal de Mathématiques Pures et Appliquées 94(6), 597–621 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Commun. Math. Phys. 214, 191–200 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Lions, P.-L.: Mathematical Topics in Fluid Mechanics, Vol 1: Incompressible Models. New York: Oxford University Press, 1996

  32. Lions, P.-L.: Mathematical Topics in Fluid Mechanics, Vol 2: Compressible Models. New York: Oxford University Press, 1998

  33. Ogawa, T.: Sharp Sobolev Inequality of Logarithmic Type and the Limiting Regularity Condition to the Harmonic Heat Flow. SIAM J. Math. Anal. 34(6), 1318–1330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maltese, D., Michalek, M., Mucha, P.B., Novotny, A., Pokorny, M., Zatorska, E.: Existence of weak solutions for compressible Navier-Stokes equations with entropy transport. J. Differ. Equ. 261(8), 4448–4485 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Michálek, M.: Stability result for Navier-Stokes equations with entropy transport. J. Math. Fluid Mech. 17(2), 279–285 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mucha, P.B.: The Cauchy problem for the compressible Navier-Stokes equations in the Lp-framework. Nonlinear Anal. 52(4), 1379–1392 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mucha, P.B., Zajaczkowski, W.: On a \(L_p\)-estimate for the linearized compressible Navier-Stokes equations with the Dirichlet boundary conditions. J. Differ. Equ. 186(2), 377–393 (2002)

    Article  ADS  MATH  Google Scholar 

  38. Mucha, P.B., Zajaczkowski, W.: Global existence of solutions of the Dirichlet problem for the compressible Navier-Stokes equations. ZAMM Z. Angew. Math. Mech. 84(6), 417–424 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Serre, D.: Asymptotics of homogeneous oscillations in a compressible viscous fluid. Bull. Soc. Bras. Mat 32, 535–442 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Stein, E.M.: Maximal functions. I. Spherical means. Proc. Nat. Acad. Sci. USA 73(7), 2174–2175 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Vauchelet, N., Zatorska, E.: Incompressible limit of the Navier-Stokes model with a growth term. Nonlinear Anal. 163, 34–59 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vasseur, A., Wen, H., Yu, C.: Global weak solution to the viscous two-phase model with finite energy. Preprint, arXiv:1704.07354

Download references

Acknowledgements

The author D.B. is partly supported by the ANR- 13-BS01- 0003-01 project DYFICOLTI, by the ANR-16-CE06-0011-02 FRAISE and by the project TelluS-INSMI-MI (INSU) CNRS. The authors P.B.M. and E.Z. have been partly supported by National Science Centre grant 2014/14/M/ST1/00108 (Harmonia). The authors want to thank P.E. Jabin and the anonymous referee for their valuable remarks about the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Bresch.

Additional information

Communicated by T.-P. Liu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bresch, D., Mucha, P.B. & Zatorska, E. Finite-Energy Solutions for Compressible Two-Fluid Stokes System. Arch Rational Mech Anal 232, 987–1029 (2019). https://doi.org/10.1007/s00205-018-01337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-01337-6

Navigation