Archive for Rational Mechanics and Analysis

, Volume 228, Issue 3, pp 891–922 | Cite as

Smoothing of Transport Plans with Fixed Marginals and Rigorous Semiclassical Limit of the Hohenberg–Kohn Functional

  • Codina Cotar
  • Gero Friesecke
  • Claudia Klüppelberg


We prove rigorously that the exact N-electron Hohenberg–Kohn density functional converges in the strongly interacting limit to the strictly correlated electrons (SCE) functional, and that the absolute value squared of the associated constrained search wavefunction tends weakly in the sense of probability measures to a minimizer of the multi-marginal optimal transport problem with Coulomb cost associated to the SCE functional. This extends our previous work for N = 2 (Cotar etal. in Commun Pure Appl Math 66:548–599, 2013). The correct limit problem has been derived in the physics literature by Seidl (Phys Rev A 60 4387–4395, 1999) and Seidl, Gorigiorgi and Savin (Phys Rev A 75:042511 1-12, 2007); in these papers the lack of a rigorous proofwas pointed out.We also give amathematical counterexample to this type of result, by replacing the constraint of given one-body density—an infinite dimensional quadratic expression in the wavefunction—by an infinite-dimensional quadratic expression in the wavefunction and its gradient. Connections with the Lawrentiev phenomenon in the calculus of variations are indicated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Becke A.D.: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18A301 (2014)CrossRefGoogle Scholar
  2. 2.
    Bindini, U., de Pascale, L.: Optimal transport with Coulomb cost and the semiclassical limit of Density Functional Theory (2017). arXiv:1702.04957
  3. 3.
    Buttazzo G., De Pascale L., Gori-Giorgi P.: Optimal transport formulation of electronic density-functional theory. Phys. Rev. A 85, 062502 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Ball J.M., Mizel V.J.: Singular minimizers for regular one-dimensional problems in the calculus of variations. Bull. Am. Math. Soc. (N.S.) 11(1), 143–146 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ball J.M., Mizel V.J.: One-dimensional variational problems whose minimizers do not satisfy the Euler–Lagrange equation. Arch. Ration.Mech. Anal. 90, 325–388 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Braides, A.: A handbook of Γ-convergence. Handbook of Differential Equations, Sta tionary Partial Differential Equations, Vol. III (Eds. Chipot M. and Quittner P.), 2006Google Scholar
  7. 7.
    Carlier G.: a class ofmultidimensional optimal transportation problems. J. Convex 972(Anal. 1), 517–529 (2003)zbMATHGoogle Scholar
  8. 8.
    Colombo M., De Pascale L., Di Marino S.: Multimarginal optimal transport maps for 1-dimensional repulsive costs. Can. J. Math. 67, 350–368 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen H., Friesecke G.: Pair densities in density functional theory. Multiscale Model. Simul. 13(4), 1259–1289 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen H., Friesecke G., Mendl Ch.: Numerical methods for a Kohn–Sham density functional model based on optimal transport. J. Chem. Theory Comput. 10, 4360–4368 (2014)CrossRefGoogle Scholar
  11. 11.
    Cotar C., Friesecke G., Pass B.: Infinite-body optimal transport with Coulomb cost. Calc. Var. PDEs. 54(1), 717–742 (2015)CrossRefzbMATHGoogle Scholar
  12. 12.
    Carlier G., Nazaret B.: Optimal transportation for the determinant. ESAIM Control Optim. Calc. Var. 14(4), 678–698 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cotar, C., Friesecke, G., Klüppelberg, C.: Density functional theory and optimal transportation with Coulomb cost. Commun. Pure Appl. Math. 66, 548–599 (2013) arXiv:1104.0603 (2011)
  14. 14.
    Dacorogna B.: in the Calculus of Variations, 2nd edn. Springer, Berlin (2008)zbMATHGoogle Scholar
  15. 15.
    di Marino, S., Gerolin, A., Nenna, L.: Optimal transportation theory with repulsive costs (2015). arXiv:1506.04565
  16. 16.
    Fabiano E., Gori-Giorgi P., Seidl M., Della Sala F.: Interaction-strength interpolation method for main-group chemistry: benchmarking, limitations, and perspectives, J. Chem. Theory Comput. 12(10), 4885–4896 (2016)CrossRefGoogle Scholar
  17. 17.
    Gangbo W., Swiech A.: for the Multidimensional Monge-Kantorovich Problem. Commun. Pure Appl. Math. 1, 23–45 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Harriman J. E.: Orthonormal orbitals for the representation of an arbitrary density. Phys. Rev. A 24(2), 680–682 (1981)CrossRefGoogle Scholar
  19. 19.
    Hohenberg P., Kohn W.: Inhomogeneous electron gas, Phys. Rev. B 136, 864–871 (1964)Google Scholar
  20. 20.
    Hoffmann-Ostenhof M., Hoffmann-Ostenhof T.: “Schrödinger inequalities” and asymptotic behavior of the electron density of atoms and molecules. Phys. Rev. A 16(5), 1782–1785 (1977)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Heinich H.: Probleme de Monge pour n probabilities. C. R. Math. Acad. Sci. Paris 334(9), 793–795 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kim Y.-H., Pass B.: A general condition for Monge solutions in the multi-marginal optimal transport problem. SIAM J. Math. Anal. 46, 1538–1550 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kohn W., Sham L. J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Levy M.: Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc. Natl. Acad. Sci. USA 76(12), 6062–6065 (1979)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Levy M., Perdew J.: Hellmann–Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic sus ceptibility for atoms. Phys. Rev. A 32, 2010–2021 (1985)Google Scholar
  26. 26.
    Lewin, M.: Semi-classical limit of the Levy–Lieb functional in density functional theory (2017). arXiv:1706.02199
  27. 27.
    Lieb E.H.: Density functionals for Coulomb systems. Int. J. Quantum Chem. 24, 243–277 (1983)CrossRefGoogle Scholar
  28. 28.
    Mania B.: Sopra un esempio di Lavrentieff. Boll. Un. Mat. Ital. 13, 147–153 (1934)zbMATHGoogle Scholar
  29. 29.
    Moameni A., Pass B.: Solutions to multi-marginal optimal transport problems con centrated on several graphs. ESAIM Control Optim. Calc. Var. 23, 551–567 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Parr R. G., Yang W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford (1995)Google Scholar
  31. 31.
    Pass B.: Remarks on the semi-classical Hohenberg–Kohn functional. Nonlinearity 20, 2731 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Seidl M.: Strong-interaction limit of density-functional theory. Phys. Rev. A 60, 4387–4395 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    Seidl M., Gori-Giorgi P., Savin A.: Strictly correlated electrons in density-functional theory: a general formulation with applications to spherical densities. Phys. Rev. A 75, 042511 1 (2007)ADSGoogle Scholar
  34. 34.
    Szabo A., Ostlund N.S.: Modern Quantum Chemistry. Dover, New York (1996)Google Scholar
  35. 35.
    Villani C.: Optimal Transport: Old and New. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Statistical ScienceUniversity College LondonLondonUK
  2. 2.Faculty of MathematicsTechnische Universität MünchenGarchingGermany

Personalised recommendations