Variational Problems with Long-Range Interaction

Abstract

We consider a class of variational problems for densities that repel each other at a distance. Typical examples are given by the Dirichlet functional and the Rayleigh functional

$$\begin{aligned} D(\mathbf{u}) = \sum_{i=1}^k \int_{\Omega} |\nabla u_i|^2 \quad \text{or} \quad R(\mathbf{u}) = \sum_{i=1}^k \frac{\int_{\Omega} |\nabla u_i|^2}{\int_{\Omega} {u_i^2}}, \end{aligned}$$

minimized in the class of \({H^1(\Omega,\mathbb{R}^k)}\) functions attaining some boundary conditions on ∂Ω, and subjected to the constraint

$$\begin{aligned} \text{dist} (\{u_i > 0\}, \{u_j > 0\}) \ge 1 \quad \forall i \neq j. \end{aligned}$$

For these problems, we investigate the optimal regularity of the solutions, prove a free-boundary condition, and derive some preliminary results characterizing the free boundary \({\partial \{\sum_{i=1}^k u_i > 0\}}\).

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Aftalion, A.; Blanc, X.; Jerrard, R.L.: Mathematical issues in the modelling of supersolids. Nonlinearity 22(7), 1589–1614 (2009)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Ambrosio, L., Braides A.: Functionals defined on partitions in sets of finite perimeter. I. Integral representation and Γ-convergence. J. Math. Pures Appl. (9) 69(3), 285–305 (1990)

  3. 3.

    Amstutz, S.; Novotny, A.A.; Van Goethem, N.: Minimal partitions and image classification using a gradient-free perimeter approximation. Inverse Probl. Imaging 8(2), 361–387 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Bourdin, B., Bucur, D., Oudet, É.: Optimal partitions for eigenvalues. SIAM J. Sci. Comput. 31(6), 4100–4114 (2009/10)

  5. 5.

    Bozorgnia, F.: Uniqueness result for long range spatially segregation elliptic system. system. Acta Appl. Math. (2017). https://doi.org/10.1007/s10440-017-0129-y

  6. 6.

    Brezis, H.: Functional analysis. Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011)

    Google Scholar 

  7. 7.

    Bucur, D.; Buttazzo, G.; Henrot, A.: Existence results for some optimal partition problems. Adv. Math. Sci. Appl. 8(2), 571–579 (1998)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Caffarelli, L.A.; Lin, F.H.: An optimal partition problem for eigenvalues. J. Sci. Comput. 31(1–2), 5–18 (2007)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Caffarelli, L.A.; Lin, F.-H.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21(3), 847–862 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Caffarelli, L.A., Patrizi, S., Quitalo, V.: On a long range segregation model. 2015. arXiv:1505.05433v3

  11. 11.

    Chang, S.-M.; Lin, C.-S.; Lin, T.-C.; Lin, W.-W.: Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates. Physica D 196(3–4), 341–361 (2004)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Conti, M.; Terracini, S.; Verzini, G.: Nehari's problem and competing species systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 19(6), 871–888 (2002)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Conti, M.; Terracini, S.; Verzini, G.: An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal. 198(1), 160–196 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Conti, M.; Terracini, S.; Verzini, G.: Asymptotic estimates for the spatial segregation of competitive systems. Adv. Math. 195(2), 524–560 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Conti, M.; Terracini, S.; Verzini, G.: On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulae. Calc. Var. Partial Differ. Equ. 22(1), 45–72 (2005)

    Article  MATH  Google Scholar 

  16. 16.

    Conti, M.; Terracini, S.; Verzini, G.: A variational problem for the spatial segregation of reaction-diffusion systems. Indiana Univ. Math. J. 54(3), 779–815 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Dancer, E.N.; Wang, K.; Zhang, Z.: The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture. J. Funct. Anal. 262(3), 1087–1131 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin, 2001. Reprint of the 1998 edition.

  20. 20.

    Henrot, A.: Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. Birkhäuser, Basel (2006)

    Google Scholar 

  21. 21.

    Henrot, A., Pierre, M.: Variation et optimisation de formes, volume 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin, 2005. Une analyse géométrique. [A geometric analysis]

  22. 22.

    Josserand, C.; Pomeau, Y.; Rica, S.: Coexistence of ordinary elasticity and superfluidity in a model of a defect-free supersolid. Phys. Rev. Lett. 98, 195301 (2007)

    ADS  Article  Google Scholar 

  23. 23.

    Josserand, C.; Pomeau, Y.; Rica, S.: Patterns and supersolids. Eur. Phys. J. Spec. Top. 146(1), 47–61 (2007)

    Article  Google Scholar 

  24. 24.

    Noris, B.; Tavares, H.; Terracini, S.; Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Comm. Pure Appl. Math. 63(3), 267–302 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Petrosyan, A.; Shahgholian, H.; Uraltseva, N.: Regularity of free boundaries in obstacle-type problems, vol. 136. graduate studies in mathematicsAmerican Mathematical Society, Providence, RI (2012)

    Google Scholar 

  26. 26.

    Ramos, M.; Tavares, H.; Terracini, S.: Extremality conditions and regularity of solutions to optimal partition problems involving Laplacian eigenvalues. Arch. Ration. Mech. Anal. 220(1), 363–443 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Soave, N.; Tavares, H.; Terracini, S.; Zilio, A.: Hölder bounds and regularity of emerging free boundaries for strongly competing Schrödinger equations with nontrivial grouping. Nonlinear Anal. 138, 388–427 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Soave, N.; Zilio, A.: Uniform bounds for strongly competing systems: the optimal Lipschitz case. Arch. Ration. Mech. Anal. 218(2), 647–697 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Soave, N.; Zilio, A.: On phase separation in systems of coupled elliptic equations: asymptotic analysis and geometric aspects. Annales de l'Institut Henri Poincare (C) Non Linear. Analysis 34(3), 625–654 (2017)

    MATH  Google Scholar 

  30. 30.

    Tavares, H.; Terracini, S.: Regularity of the nodal set of segregated critical configurations under a weak reflection law. Calc. Var. Partial Differ. Equ. 45(3–4), 273–317 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Tavares, H.; Terracini, S.: Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(2), 279–300 (2012)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Terracini, S.; Verzini, G.; Zilio, A.: Uniform Hölder regularity with small exponent in competition-fractional diffusion systems. Discrete Contin. Dyn. Syst. 34(6), 2669–2691 (2014)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Terracini, S.; Verzini, G.; Zilio, A.: Uniform Hölder bounds for strongly competing systems involving the square root of the laplacian. J. Eur. Math. Soc. JEMS 18(12), 2865–2924 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Verzini, G.; Zilio, A.: Strong competition versus fractional diffusion: the case of Lotka-Volterra interaction. Commun. Partial Differ. Equ. 39(12), 2284–2313 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Wei, J.; Weth, T.: Asymptotic behaviour of solutions of planar elliptic systems with strong competition. Nonlinearity 21(2), 305–317 (2008)

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicola Soave.

Additional information

Communicated by A. Figalli

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soave, N., Tavares, H., Terracini, S. et al. Variational Problems with Long-Range Interaction. Arch Rational Mech Anal 228, 743–772 (2018). https://doi.org/10.1007/s00205-017-1204-2

Download citation