Archive for Rational Mechanics and Analysis

, Volume 228, Issue 3, pp 743–772 | Cite as

Variational Problems with Long-Range Interaction

  • Nicola Soave
  • Hugo Tavares
  • Susanna Terracini
  • Alessandro Zilio
Article
  • 100 Downloads

Abstract

We consider a class of variational problems for densities that repel each other at a distance. Typical examples are given by the Dirichlet functional and the Rayleigh functional
$$\begin{aligned} D(\mathbf{u}) = \sum_{i=1}^k \int_{\Omega} |\nabla u_i|^2 \quad \text{or} \quad R(\mathbf{u}) = \sum_{i=1}^k \frac{\int_{\Omega} |\nabla u_i|^2}{\int_{\Omega} {u_i^2}}, \end{aligned}$$
minimized in the class of \({H^1(\Omega,\mathbb{R}^k)}\) functions attaining some boundary conditions on ∂Ω, and subjected to the constraint
$$\begin{aligned} \text{dist} (\{u_i > 0\}, \{u_j > 0\}) \ge 1 \quad \forall i \neq j. \end{aligned}$$
For these problems, we investigate the optimal regularity of the solutions, prove a free-boundary condition, and derive some preliminary results characterizing the free boundary \({\partial \{\sum_{i=1}^k u_i > 0\}}\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aftalion, A.; Blanc, X.; Jerrard, R.L.: Mathematical issues in the modelling of supersolids. Nonlinearity 22(7), 1589–1614 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ambrosio, L., Braides A.: Functionals defined on partitions in sets of finite perimeter. I. Integral representation and Γ-convergence. J. Math. Pures Appl. (9) 69(3), 285–305 (1990)Google Scholar
  3. 3.
    Amstutz, S.; Novotny, A.A.; Van Goethem, N.: Minimal partitions and image classification using a gradient-free perimeter approximation. Inverse Probl. Imaging 8(2), 361–387 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bourdin, B., Bucur, D., Oudet, É.: Optimal partitions for eigenvalues. SIAM J. Sci. Comput. 31(6), 4100–4114 (2009/10)Google Scholar
  5. 5.
    Bozorgnia, F.: Uniqueness result for long range spatially segregation elliptic system. system. Acta Appl. Math. (2017).  https://doi.org/10.1007/s10440-017-0129-y
  6. 6.
    Brezis, H.: Functional analysis. Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011)MATHGoogle Scholar
  7. 7.
    Bucur, D.; Buttazzo, G.; Henrot, A.: Existence results for some optimal partition problems. Adv. Math. Sci. Appl. 8(2), 571–579 (1998)MathSciNetMATHGoogle Scholar
  8. 8.
    Caffarelli, L.A.; Lin, F.H.: An optimal partition problem for eigenvalues. J. Sci. Comput. 31(1–2), 5–18 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Caffarelli, L.A.; Lin, F.-H.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21(3), 847–862 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Caffarelli, L.A., Patrizi, S., Quitalo, V.: On a long range segregation model. 2015. arXiv:1505.05433v3
  11. 11.
    Chang, S.-M.; Lin, C.-S.; Lin, T.-C.; Lin, W.-W.: Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates. Physica D 196(3–4), 341–361 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Conti, M.; Terracini, S.; Verzini, G.: Nehari's problem and competing species systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 19(6), 871–888 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Conti, M.; Terracini, S.; Verzini, G.: An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal. 198(1), 160–196 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Conti, M.; Terracini, S.; Verzini, G.: Asymptotic estimates for the spatial segregation of competitive systems. Adv. Math. 195(2), 524–560 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Conti, M.; Terracini, S.; Verzini, G.: On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulae. Calc. Var. Partial Differ. Equ. 22(1), 45–72 (2005)CrossRefMATHGoogle Scholar
  16. 16.
    Conti, M.; Terracini, S.; Verzini, G.: A variational problem for the spatial segregation of reaction-diffusion systems. Indiana Univ. Math. J. 54(3), 779–815 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Dancer, E.N.; Wang, K.; Zhang, Z.: The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture. J. Funct. Anal. 262(3), 1087–1131 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin, 2001. Reprint of the 1998 edition.Google Scholar
  20. 20.
    Henrot, A.: Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. Birkhäuser, Basel (2006)MATHGoogle Scholar
  21. 21.
    Henrot, A., Pierre, M.: Variation et optimisation de formes, volume 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin, 2005. Une analyse géométrique. [A geometric analysis]Google Scholar
  22. 22.
    Josserand, C.; Pomeau, Y.; Rica, S.: Coexistence of ordinary elasticity and superfluidity in a model of a defect-free supersolid. Phys. Rev. Lett. 98, 195301 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Josserand, C.; Pomeau, Y.; Rica, S.: Patterns and supersolids. Eur. Phys. J. Spec. Top. 146(1), 47–61 (2007)CrossRefGoogle Scholar
  24. 24.
    Noris, B.; Tavares, H.; Terracini, S.; Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Comm. Pure Appl. Math. 63(3), 267–302 (2010)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Petrosyan, A.; Shahgholian, H.; Uraltseva, N.: Regularity of free boundaries in obstacle-type problems, vol. 136. graduate studies in mathematicsAmerican Mathematical Society, Providence, RI (2012)CrossRefMATHGoogle Scholar
  26. 26.
    Ramos, M.; Tavares, H.; Terracini, S.: Extremality conditions and regularity of solutions to optimal partition problems involving Laplacian eigenvalues. Arch. Ration. Mech. Anal. 220(1), 363–443 (2016)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Soave, N.; Tavares, H.; Terracini, S.; Zilio, A.: Hölder bounds and regularity of emerging free boundaries for strongly competing Schrödinger equations with nontrivial grouping. Nonlinear Anal. 138, 388–427 (2016)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Soave, N.; Zilio, A.: Uniform bounds for strongly competing systems: the optimal Lipschitz case. Arch. Ration. Mech. Anal. 218(2), 647–697 (2015)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Soave, N.; Zilio, A.: On phase separation in systems of coupled elliptic equations: asymptotic analysis and geometric aspects. Annales de l'Institut Henri Poincare (C) Non Linear. Analysis 34(3), 625–654 (2017)MATHGoogle Scholar
  30. 30.
    Tavares, H.; Terracini, S.: Regularity of the nodal set of segregated critical configurations under a weak reflection law. Calc. Var. Partial Differ. Equ. 45(3–4), 273–317 (2012)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Tavares, H.; Terracini, S.: Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(2), 279–300 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Terracini, S.; Verzini, G.; Zilio, A.: Uniform Hölder regularity with small exponent in competition-fractional diffusion systems. Discrete Contin. Dyn. Syst. 34(6), 2669–2691 (2014)MathSciNetMATHGoogle Scholar
  33. 33.
    Terracini, S.; Verzini, G.; Zilio, A.: Uniform Hölder bounds for strongly competing systems involving the square root of the laplacian. J. Eur. Math. Soc. JEMS 18(12), 2865–2924 (2016)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Verzini, G.; Zilio, A.: Strong competition versus fractional diffusion: the case of Lotka-Volterra interaction. Commun. Partial Differ. Equ. 39(12), 2284–2313 (2014)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Wei, J.; Weth, T.: Asymptotic behaviour of solutions of planar elliptic systems with strong competition. Nonlinearity 21(2), 305–317 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Dipartimento di MatematicaPolitecnico di MilanoMilanItaly
  2. 2.CAMGSD (Center for Mathematical Analysis, Geometry and Dynamical Systems), Departamento de Matemática, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  3. 3.Departamento de Matemática, Faculdade de Ciências daUniversidade de LisboaLisboaPortugal
  4. 4.Dipartimento di Matematica “Giuseppe Peano”Università di TorinoTurinItaly
  5. 5.Laboratoire J.-L. Lions (CNRS UMR 7598), Université Paris Diderot - Paris 7Paris Cedex 13France

Personalised recommendations