The Role of the Pressure in the Partial Regularity Theory for Weak Solutions of the Navier–Stokes Equations

Abstract

We study the role of the pressure in the partial regularity theory for weak solutions of the Navier–Stokes equations. By introducing the notion of dissipative solutions, due to Duchon and Robert (Nonlinearity 13:249–255, 2000), we will provide a generalization of the Caffarelli, Kohn and Nirenberg theory. Our approach sheels new light on the role of the pressure in this theory in connection to Serrin’s local regularity criterion.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Campanato S.: Proprietà di hölderianità di alcune classi di funzione. Ann. Scuola Norm. Sup. Pisa. 17, 175–188 (1963)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Chen Z.M., Price W.R.: Morrey space techniques applied to the interior regularity problem of the Navier–Stokes equations. Nonlinearity 14, 1453–1472 (2001)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Coifman R., Weiss G.: Analyse Harmonique Non-commutative Sur Certains Espaces Homogènes Lecture Notes in Mathematics. Springer, Berlin (1971)

    Google Scholar 

  5. 5.

    Duchon J., Robert R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity 13, 249–255 (2000)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Federer H.: Geometric Measure Theory. Springer, Berlin (1969)

    Google Scholar 

  7. 7.

    Kukavica I.: On partial regularity for the Navier–Stokes equations. Discrete Contin. Dyn. Syst. 21, 717–728 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Ladyzhenskaya O., Seregin G.: On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations. J. Math. Fluid Mech. 1, 356–387 (1999)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Lemarié-Rieusset, P.G.: Recent Developments in the Navier–Stokes Problem. Chapman & Hall/CRC, London, 2002

  10. 10.

    Lemarié–Rieusset, P.G.: The Navier–Stokes Problem in the XXIst Century. Chapman & Hall/CRC, London, 2016

  11. 11.

    Lin F.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure Appl. Math. 51, 240–257 (1998)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    O’Leary M.: Conditions for the local boundedness of solutions of the Navier–Stokes system in three dimensions. Commun. Partial Differ. Equ. 28, 617–636 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Scheffer V.: Partial regularity of solutions to the Navier–Stokes equations. Pac. J. Math. 66, 535–552 (1976)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Scheffer V.: Hausdorff measure and the Navier–Stokes equations. Commun. Math. Phys. 55, 97–112 (1977)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Serrin J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Struwe M.: On partial regularity results for the Navier–Stokes equations. Commun. Pure Appl. Math. 41, 437–458 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Takahashi S.: On interior regularity criteria for weak solutions of the Navier–Stokes equations. Manuscr. Math. 69, 237–254 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Vasseur A.: A new proof of partial regularity of solutions to Navier–Stokes equations. Nonlinear Differ. Equ. Appl. 14, 753–785 (2007)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diego Chamorro.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chamorro, D., Lemarié-Rieusset, PG. & Mayoufi, K. The Role of the Pressure in the Partial Regularity Theory for Weak Solutions of the Navier–Stokes Equations. Arch Rational Mech Anal 228, 237–277 (2018). https://doi.org/10.1007/s00205-017-1191-3

Download citation