Abstract
We consider the so-called spatially homogenous Kolmogorov–Vicsek model, a non-linear Fokker–Planck equation of self-driven stochastic particles with orientation interaction under the space-homogeneity. We prove the global existence and uniqueness of weak solutions to the equation. We also show that weak solutions exponentially converge to a steady state, which has the form of the Fisher-von Mises distribution.
Similar content being viewed by others
References
Aldana M., Huepe C.: Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach. J. Stat. Phys. 112, 135–153 (2003)
Ambrosio, L., Gigli, N., Savare, G.: Gradient flows in metric spaces and in spaces of probability measures, lectures in mathematics eth zurich. Birkhauser Verlag, Basel, 2005
Ambrosio, L., Gigli, N.: A user’s guide to optimal transport, Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics, Vol. 2062, pp. 1–155, 2013
Bakry, D., Emery, M.: Diffusions hypercontractives. Sem. Probab., XIX, Lecture Notes in Math., Vol. 1123, pp. 177–206, Springer-Verlag, New York Berlin, 1985
Benamou J.-D., Brenier Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)
Bolley F., Cañizo J.A., Carrillo J.A.: Mean-field limit for the stochastic Vicsek model. Appl. Math. Lett. 25, 339–343 (2012)
Bostan M., Carrillo J.A.: Asymptotic fixed-speed reduced dynamics for kinetic equations in swarming. Math. Models Methods Appl. Sci. 23, 2353–2393 (2013)
Couzin I.D., Krause J., James R., Ruxton G.D., Franks N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)
Degond P., Dimarco G., Mac T.B.N.: Hydrodynamics of the Kuramoto-Vicsek model of rotating self-propelled particles. Math. Models Methods Appl. Sci. 24, 277–325 (2014)
Degond P., Frouvelle A., Liu J.-G.: Macroscopic limits and phase transition in a system of self-propelled particles. J. Nonlinear Sci. 23, 427–456 (2012)
Degond P., Frouvelle A., Liu J.-G.: Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics. Arch. Rational Mech. Anal. 216, 63–115 (2015)
Degond P., Motsch S.: Macroscopic limit of self-driven particles with orientation interaction. C. R. Acad. Sci. Paris Ser I. 345, 555–560 (2007)
Degond P., Motsch S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18, 1193–1215 (2008)
Degond P., Yang T.: Diffusion in a continuum model of self-propelled particles with alignment interaction. Math. Models Methods Appl. Sci. 20, 1459–1490 (2010)
Fathi A., Figalli A.: Optimal transportation on non-compact manifolds. Israel J. Math. 175, 1–59 (2010)
Figalli A., Gigli N.: A new transportation distance between non-negative measures, with applications to gradients flows with dirichlet boundary conditions. J. Math. Pures Appl. 94, 107–130 (2010)
Figalli, A., Villani, C.: Optimal transport and curvature, Nonlinear PDE’s and Applications, Lecture Notes in Mathatics 2028, pp. 171–217. Springer, Heidelberg, 2011
Frouvelle A.: A continuum model for alignment of self-propelled particles with anisotropy and density dependent parameters. Math. Mod. Meth. Appl. Sci. 22, 1250011 (2012)
Frouvelle A., Liu J.-G.: Dynamics in a kinetic model of oriented particles with phase transition. SIAM J. Math. Anal. 44, 791–826 (2012)
Gamba I.M., Haack J.R., Motsch S.: Spectral method for a kinetic swarming model. J. Comput. Phys., 297, 32–46 (2015)
Gamba I.M., Kang M.-J.: Global weak solutions for Kolmogorov–Vicsek type equations with orientational interactions. Arch. Rational Mech. Anal. 222(1), 317–342 (2016)
Gozlan, N., Leonard, C.: Transport inequalities. A survey. Markov Process. Related Fields 16(4), 635–736. arXiv:1003.3852. 2010
Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702, 2004
Ha S.-Y., Jeong E., Kang M.-J.: Emergent behaviour of a generalized Viscek-type flocking model. Nonlinearity 23, 3139–3156 (2010)
Holley, R., Stroock, D.: Logarithmic Sobolev inequalities and stochastic Ising models, 1987
Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker–Planck equation. SIAM J.Math. Anal. 29(1), 1–17 (1998)
McCann R.J.: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11, 589–608 (2001)
Otto F., Tzavaras A.: Continuity of velocity gradients in suspensions of rod-like molecules. Commun. Math. Phys. 277, 729–758 (2008)
Otto F., Villani C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000)
Vicsek T., Czirók A., Ben-Jacob E., Cohen I., Shochet O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)
Villani, C.: Optimal transport, old and new, Grundlehren des mathematischen Wissenschaften [Fundamental Principles os mathematical Sciences], Vol. 338, Springer-Verlag, Berlin-New York, 2009
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by F. Otto
Corresponding author: Moon-Jin Kang.
Rights and permissions
About this article
Cite this article
Figalli, A., Kang, MJ. & Morales, J. Global Well-posedness of the Spatially Homogeneous Kolmogorov–Vicsek Model as a Gradient Flow. Arch Rational Mech Anal 227, 869–896 (2018). https://doi.org/10.1007/s00205-017-1176-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-017-1176-2