Skip to main content
Log in

Global Well-posedness of the Spatially Homogeneous Kolmogorov–Vicsek Model as a Gradient Flow

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the so-called spatially homogenous Kolmogorov–Vicsek model, a non-linear Fokker–Planck equation of self-driven stochastic particles with orientation interaction under the space-homogeneity. We prove the global existence and uniqueness of weak solutions to the equation. We also show that weak solutions exponentially converge to a steady state, which has the form of the Fisher-von Mises distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldana M., Huepe C.: Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach. J. Stat. Phys. 112, 135–153 (2003)

    Article  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savare, G.: Gradient flows in metric spaces and in spaces of probability measures, lectures in mathematics eth zurich. Birkhauser Verlag, Basel, 2005

  3. Ambrosio, L., Gigli, N.: A user’s guide to optimal transport, Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics, Vol. 2062, pp. 1–155, 2013

  4. Bakry, D., Emery, M.: Diffusions hypercontractives. Sem. Probab., XIX, Lecture Notes in Math., Vol. 1123, pp. 177–206, Springer-Verlag, New York Berlin, 1985

  5. Benamou J.-D., Brenier Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolley F., Cañizo J.A., Carrillo J.A.: Mean-field limit for the stochastic Vicsek model. Appl. Math. Lett. 25, 339–343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bostan M., Carrillo J.A.: Asymptotic fixed-speed reduced dynamics for kinetic equations in swarming. Math. Models Methods Appl. Sci. 23, 2353–2393 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Couzin I.D., Krause J., James R., Ruxton G.D., Franks N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  9. Degond P., Dimarco G., Mac T.B.N.: Hydrodynamics of the Kuramoto-Vicsek model of rotating self-propelled particles. Math. Models Methods Appl. Sci. 24, 277–325 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Degond P., Frouvelle A., Liu J.-G.: Macroscopic limits and phase transition in a system of self-propelled particles. J. Nonlinear Sci. 23, 427–456 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Degond P., Frouvelle A., Liu J.-G.: Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics. Arch. Rational Mech. Anal. 216, 63–115 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Degond P., Motsch S.: Macroscopic limit of self-driven particles with orientation interaction. C. R. Acad. Sci. Paris Ser I. 345, 555–560 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Degond P., Motsch S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18, 1193–1215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Degond P., Yang T.: Diffusion in a continuum model of self-propelled particles with alignment interaction. Math. Models Methods Appl. Sci. 20, 1459–1490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fathi A., Figalli A.: Optimal transportation on non-compact manifolds. Israel J. Math. 175, 1–59 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Figalli A., Gigli N.: A new transportation distance between non-negative measures, with applications to gradients flows with dirichlet boundary conditions. J. Math. Pures Appl. 94, 107–130 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Figalli, A., Villani, C.: Optimal transport and curvature, Nonlinear PDE’s and Applications, Lecture Notes in Mathatics 2028, pp. 171–217. Springer, Heidelberg, 2011

  18. Frouvelle A.: A continuum model for alignment of self-propelled particles with anisotropy and density dependent parameters. Math. Mod. Meth. Appl. Sci. 22, 1250011 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frouvelle A., Liu J.-G.: Dynamics in a kinetic model of oriented particles with phase transition. SIAM J. Math. Anal. 44, 791–826 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gamba I.M., Haack J.R., Motsch S.: Spectral method for a kinetic swarming model. J. Comput. Phys., 297, 32–46 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Gamba I.M., Kang M.-J.: Global weak solutions for Kolmogorov–Vicsek type equations with orientational interactions. Arch. Rational Mech. Anal. 222(1), 317–342 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Gozlan, N., Leonard, C.: Transport inequalities. A survey. Markov Process. Related Fields 16(4), 635–736. arXiv:1003.3852. 2010

  23. Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702, 2004

  24. Ha S.-Y., Jeong E., Kang M.-J.: Emergent behaviour of a generalized Viscek-type flocking model. Nonlinearity 23, 3139–3156 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Holley, R., Stroock, D.: Logarithmic Sobolev inequalities and stochastic Ising models, 1987

  26. Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker–Planck equation. SIAM J.Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. McCann R.J.: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11, 589–608 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Otto F., Tzavaras A.: Continuity of velocity gradients in suspensions of rod-like molecules. Commun. Math. Phys. 277, 729–758 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Otto F., Villani C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vicsek T., Czirók A., Ben-Jacob E., Cohen I., Shochet O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  31. Villani, C.: Optimal transport, old and new, Grundlehren des mathematischen Wissenschaften [Fundamental Principles os mathematical Sciences], Vol. 338, Springer-Verlag, Berlin-New York, 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon-Jin Kang.

Additional information

Communicated by F. Otto

Corresponding author: Moon-Jin Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figalli, A., Kang, MJ. & Morales, J. Global Well-posedness of the Spatially Homogeneous Kolmogorov–Vicsek Model as a Gradient Flow. Arch Rational Mech Anal 227, 869–896 (2018). https://doi.org/10.1007/s00205-017-1176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1176-2

Navigation