Abstract
We consider a family of porous media equations with fractional pressure, recently studied by Caffarelli and Vázquez. We show the construction of a weak solution as the Wasserstein gradient flow of a square fractional Sobolev norm. The energy dissipation inequality, regularizing effect and decay estimates for the L p norms are established. Moreover, we show that a classical porous medium equation can be obtained as a limit case.
This is a preview of subscription content, access via your institution.
References
Adams, D.R., Hedberg, L.I.: Function spaces and potential theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314. Springer-Verlag, Berlin, 1996
Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005
Ambrosio L., Mainini E., Serfaty S.: Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices. Ann. Inst. H. Poincaré Anal. Non Linèaire 28(2), 217–246 (2011)
Ambrosio L., Serfaty S.: A gradient flow approach to an evolution problem arising in superconductivity. Commun. Pure Appl. Math. 61(11), 1495–1539 (2008)
Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg, 2011
Biler P., Imbert C., Karch G.: The nonlocal porous medium equation: Barenblatt profiles and other weak solutions. Arch. Ration. Mech. Anal. 215, 497–529 (2015)
Blanchet A.: A gradient flow approach to the Keller–Segel systems. RIMS Kokyuroku’s lecture note 1837, 52–73 (2013)
Blanchet, A.: On the parabolic-elliptic Patlak–Keller–Segel system in dimension 2 and higher. Séminaire équations aux dérivées partielles (8), (2011–2012)
Blanchet A., Calvez V., Carrillo J.A.: Convergence of the mass-transport steepest descent scheme for the sub-critical Patlak–Keller–Segel model. SIAM J. Numer. Anal. 46(2), 691–721 (2008)
Bonforte, M., Grillo, G.: Asymptotics of the porous media equation via Sobolev inequalities. J. Funct. Anal. 225(1), 33–62 (2005)
Caffarelli L., Soria F., Vázquez J.L.: Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. (JEMS) 15, 1701–1746 (2013)
Caffarelli L., Vasseur A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. (2) 171(3), 1903–1930 (2010)
Caffarelli L., Vasseur A.: The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete Contin. Dyn. Syst. Ser. S. 3(3), 409–427 (2010)
Caffarelli L., Vázquez J.L.: Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565 (2011)
Caffarelli L., Vázquez J.L.: Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Syst. 29(4), 1393–1404 (2011)
Caffarelli L., Vázquez J.L.: Regularity of solutions of the fractional porous medium flow with exponent 1/2. St. Petersb. Math. J. 27, 437–460 (2016)
Chapman S.J., Rubinstein J., Schatzman M.: A mean-field model of superconducting vortices. Eur. J. Appl. Math. 7, 97–111 (1996)
Carrillo J.A., Huang Y., Santos M.C., Vázquez J.L.: Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure. J. Differ. Equ. 258, 736–763 (2015)
Cotsiolis A., Tavoularis N.K.: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295, 225–236 (2004)
E W.: Dynamics of vortices in Ginzburg–Landau theories with applications to superconductivity. Phys. D. 77, 383–404 (1994)
Imbert C.: Finite speed of propagation for a non-local porous medium equation. Colloq. Math. 143(2), 149–157 (2016)
Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)
Lin F., Zhang P.: On the hydrodynamic limit of Ginzburg–Landau vortices. Discrete Contin. Dynam. Syst. 6, 121–142 (2000)
Matthes D., McCann R.J., Savaré G.: A family of nonlinear fourth order equations of gradient flow type. Commun. Partial Differ. Equ. 34, 1352–1397 (2009)
McCann R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)
Nochetto R.H., Savaré G., Verdi C.: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Commun. Pure Appl. Math. 53(5), 525–589 (2000)
Serfaty, S., Vázquez, J.L.: A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators. Calc. Var. Partial Differ. Equ. 49(3-4), 1091–1120 (2014)
Stan, D., del Teso, F., Vázquez J.L.: Existence of weak solutions for a general porous medium equation with nonlocal pressure. arXiv:1609.05139
Stan, D., del Teso, F., Vázquez, J.L.: Finite and infinite speed of propagation for porous medium equations with nonlocal pressure. J. Differ. Equ. 260(2), 1154–1199 (2016)
Stan, D., del Teso, F., Vázquez, J.L.: Transformations of self-similar solutions for porous medium equations of fractional type. Nonlinear Anal. 119, 62–73 (2015)
Vázquez, J.L.: The porous medium equation. Mathematical theory. Oxford University Press, Oxford, 2007
Vázquez, J.L.: The mathematical theories of diffusion. Nonlinear and fractional diffusion. In: Nonlocal and Nonlinear diffusions and interactions: new methods and directions, Springer LectureNotes in Mathematics, vol. 2186, C.I.M.E. Foundation subseries, 2017
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Figalli
Rights and permissions
About this article
Cite this article
Lisini, S., Mainini, E. & Segatti, A. A Gradient Flow Approach to the Porous Medium Equation with Fractional Pressure. Arch Rational Mech Anal 227, 567–606 (2018). https://doi.org/10.1007/s00205-017-1168-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-017-1168-2