Skip to main content
Log in

A Boundary Value Problem for a Class of Anisotropic Degenerate Parabolic–Hyperbolic Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider a mixed type boundary value problem for a class of degenerate parabolic–hyperbolic equations. Namely, we consider a Cartesian product domain and split its boundary into two parts. In one of them we impose a Dirichlet boundary condition; in the other, we impose a Neumann condition. We apply a normal trace formula for L 2-divergence-measure fields to prove a new strong trace property in the part of the boundary where the Neumann condition is imposed. We prove the existence and uniqueness of the entropy solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.; Fusco, N.; Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford, Oxford Mathematical Monographs (2000)

    MATH  Google Scholar 

  2. Bardos, C.; Leroux, A.Y.; Nedelec, J.C.: First order quasilinear equations with boundary conditions. Commun. Partial Differ. Equ. 4(9), 1017–1034 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bendahmane, M.; Karlsen, K.H.: Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations. SIAM J. Math. Anal. 36(2), 405–422 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben Moussa, B.; Szepessy, A.: Scalar conservation laws with boundary conditions and rough data measure solutions. Methods Appl. Anal. 9(4), 579–598 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Diofferential Equations. Springer, Berlin (2010)

    Google Scholar 

  6. Bürger, R.; Frid, H.; Karlsen, K.H.: On the well-posedness of entropy solutions to conservation laws with a zero-flux boundary condition. J. Math. Anal. Appl. 326, 108–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carrillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147, 269–361 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, G.-Q.; Frid, H.: Divergence-measure fields and hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147(2), 89–118 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, G.-Q.; Frid, H.: On the theory of divergence-measure fields and its applications. Bull. Braz. Math. Soc. 32(3), 401–433 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, G.-Q.; Frid, H.: Extended divergence-measure fields and the Euler equations for gas dynamics. Commun. Math. Phys. 236(2), 251–280 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Chen, G.-Q.; Karlsen, K.H.: Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients. Commun. Pure Appl. Anal. 4(2), 241–266 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, G.-Q.; Perthame, B.: Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. Henri Poincaré 20, 645–668 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 3rd edn. Springer, Berlin, 1999, 2005, 2010

  14. Evans, L.C.; Gariepy, R.F.: Lecture Notes on Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  15. Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS No. 174, American Mathematical Society, Providence, 1988

  16. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

    MATH  Google Scholar 

  17. Frid, H.: Divergence-measure fields on domains with Lipschitz boundary. Hyperbolic conservation laws and related analysis with applications. Springer Proceedings in Mathematics & Statistics, vol. 49, pp. 207–225. Springer, Heidelberg, 2014

  18. Kruzhkov, S.N.: First order quasilinear equations in several independent variables. Math. USSR Sb. 10, 217–243 (1970)

    Article  MATH  Google Scholar 

  19. Kwon, Y.-S.; Vasseur, A.: Strong traces for solutions to scalar conservation laws with general flux. Arch. Ration. Mech. Anal. 185(3), 495–513 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kwon, Y.-S.: Strong traces for degenerate parabolic-hyperbolic equations. Discret. Contin. Dyn. Syst. 25(4), 1275–1286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ladyzhenskaya, O.A.; Solonnikov, V.A.; Ural'ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society, Providence (1968)

    Google Scholar 

  22. Mascia, C.; Porreta, A.; Terracina, A.: Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations. Arch. Ration. Mech. Anal. 163, 87–124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Michel, A.; Vovelle, J.: Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods. SIAM J. Numer. Anal. 41(6), 2262–2293 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Otto, F.: Initial-boundary value problem for scalar conservation laws. C. R. Acad. Sci. Paris 322, Serie I, 729–734, 1996

  25. Panov, E.: Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperb. Differ. Equ. 4(4), 729–770 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Perthame, B.: Kinetic formulations of parabolic and hyperbolic PDEs: from theory to numerics. Handbook of Differential Equations Evolutionary Equations. Vol. I. North-Holland, Amsterdam, , 437–471, 2004

  27. Perthame, B.; Souganidis, P.E.: A limiting case for velocity averaging. Ann. Sci. Ecole Norm. Sup. 4(31), 591–598 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Silhavý, M.: The divergence theorem for divergence measure vectorfields on sets with fractal boundaries. Math. Mech. Solids 14(5), 445–455 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Silhavý, M.: Normal currents: struture, duality pairings and div-curl lemmas. Milan J. Math. 76, 275–306 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Szepessy, A.: Measure-valued solutions of scalar conservation laws with boundary conditions. Arch. Ration. Mech. Anal. 28, 181–193 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tadmor, E., Tao, T.: Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs. Commun. Pure Appl. Math. LX, 1488–1521, 2007

  32. Vasseur, A.: Strong traces for solutions of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 160, 181–193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vol’pert, A.I.; Hudjaev, S.I.: Cauchy's problem for degenerate second order quasilinear parabolic equations. Math. USSR Sb. 7(3), 365–387 (1969)

    Article  Google Scholar 

  34. Wu, Z.; Zhao, J.: The first boundary value problem for quasilinear degenerate parabolic equations of second order in several space variables. Chin. Ann. Math. 4B(1), 57–76 (1983)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermano Frid.

Additional information

Communicated by Constantine Dafermos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frid, H., Li, Y. A Boundary Value Problem for a Class of Anisotropic Degenerate Parabolic–Hyperbolic Equations. Arch Rational Mech Anal 226, 975–1008 (2017). https://doi.org/10.1007/s00205-017-1148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1148-6

Navigation