Skip to main content
Log in

Statistical Solutions of Hyperbolic Conservation Laws: Foundations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We seek to define statistical solutions of hyperbolic systems of conservation laws as time-parametrized probability measures on p-integrable functions. To do so, we prove the equivalence between probability measures on L p spaces and infinite families of correlation measures. Each member of this family, termed a correlation marginal, is a Young measure on a finite-dimensional tensor product domain and provides information about multi-point correlations of the underlying integrable functions. We also prove that any probability measure on a L p space is uniquely determined by certain moments (correlation functions) of the equivalent correlation measure. We utilize this equivalence to define statistical solutions of multi-dimensional conservation laws in terms of an infinite set of equations, each evolving a moment of the correlation marginal. These evolution equations can be interpreted as augmenting entropy measure-valued solutions, with additional information about the evolution of all possible multi-point correlation functions. Our concept of statistical solutions can accommodate uncertain initial data as well as possibly non-atomic solutions, even for atomic initial data. For multi-dimensional scalar conservation laws we impose additional entropy conditions and prove that the resulting entropy statistical solutions exist, are unique and are stable with respect to the 1-Wasserstein metric on probability measures on L 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Basel (2005)

  2. Ball, J.: A version of the fundamental theorem for Young measures. In: Rascle, M., Serre, D., Slemrod, M. (eds.) PDEs and Continuum Models of Phase Transitions. Lecture Notes in Physics, vol. 344, pp. 207–215. Springer, Berlin (1989)

  3. Bardos C., Titi E., Wiedemann E.: The vanishing viscosity as a selection principle for the Euler equations: the case of 3D shear flow. C.R. Math. Acad. Sci. Paris 350(15–16), 757–760 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benzoni-Gavage, S., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations. First Order Systems and Applications. Oxford University Press, Oxford (2007)

  5. Bertoin J.: The inviscid Burgers equation with Brownian initial velocity. Commun. Math. Phys. 193(2), 397–406 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bianchini S., Bressan A.: Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. 161(1), 223–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bijl, H., Lucor, D., Mishra, S., Schwab, Ch. (eds.): Uncertainty quantification in computational fluid dynamics. Lecture Notes in Computational Science and Engineering, vol. 92, Springer, Berlin (2014)

  8. Bressan, A.: Hyperbolic Systems of Conservation Laws: The One Dimensional Cauchy Problem. Oxford University Press, Oxford (2000)

  9. Carraro L., Duchon J.: Intrinsic statistical solutions of the Burgers equation and Levy processes. C. R. Math. Acad. Sci. Paris 319(8), 855–858 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Carraro L., Duchon J.: Burgers equation with initial conditions with homogeneous and independent increments. Ann. Inst. H. Poincaré Anal. Non Lineare, 15(4), 431–458 (1998)

    Article  ADS  MATH  Google Scholar 

  11. Chae D.: The vanishing viscosity limit of statistical solutions of the Navier–Stokes equations. I. 2-D periodic case. J. Math. Anal. Appl., 155(2), 437–459 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chae D.: The vanishing viscosity limit of statistical solutions of the Navier–Stokes equations. II. The general case. J. Math. Anal. Appl., 155(2), 460–484 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Comon, Pierre, Golub, Gene, Lim, Lek-Heng, Mourrain, Bernard: Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl, 30(3): 1254–1279 (2008)

  14. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Oxford (1992)

  15. Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000)

  16. De Lellis, C., Székelyhidi Jr. L.: The Euler equations as a differential inclusion. Ann. Math. 170(3), 1417–1436 (2009)

  17. Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68(7), 1157–1190 (2015)

  18. Demoulini S., Stuart D. M. A., Tzavaras A. E.: Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics. Arch. Ration. Mech. Anal. 205(3), 927–961 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Diestel, J., Uhl, J. J.: Vector Measures. American Mathematical Society, Providence (1977)

  20. DiPerna R. J.: Measure-valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88, 223–270 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. DiPerna R. J., Majda A.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108(4), 667–689 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Edwards, R. E.: Functional Analysis. Theory and Applications. Holt, Rinehart and Winston, Inc. (1965)

  23. Fjordholm U. S., Käppeli R., Mishra S., Tadmor E.: Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws. Found. Comput. Math. 17(3), 763–827 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fjordholm U. S., Mishra S., Tadmor E.: On the computation of measure-valued solutions. Acta Numer. 25, 567–679 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fjordholm, U. S., Lye, K. O., Mishra, S.: Statistical solutions of hyperbolic conservation laws II: numerical approximation in the scalar case. In preparation (2017)

  26. Fjordholm, U. S., Lye, K. O., Mishra, S., Weber, F. R.: Statistical solutions of hyperbolic conservation laws III: numerical approximation for multi-dimensional systems. In preparation (2017).

  27. Foiaş C.: Statistical study of Navier–Stokes equations I. Rend. Sem. Mat. Univ. Padova 48, 219–348 (1972)

    MathSciNet  MATH  Google Scholar 

  28. Foiaş C.: Statistical study of Navier–Stokes equations II. Rend. Sem. Mat. Univ. Padova 49, 9–123 (1973)

    MATH  Google Scholar 

  29. Foiaş, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes Equations and Turbulence. Cambridge University Press, Cambridge (2001)

  30. Frisch, U.: Turbulence. Cambridge University Press, Cambridge (1995)

  31. Ghanem, R., Higdon, D., Owhadi, H. (eds.): Handbook of Uncertainty Quantification, Springer, Berlin (2016)

  32. Glimm J.: Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18(4), 697–715 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grafakos, L.: Classical Fourier Analysis. Springer, New York (2008)

  34. Gwiazda P., Swierczewska-Gwiazda A., Wiedemann E.: Weak-Strong uniqueness for measure-valued solutions of some compressible fluid models. Nonlinearity 28, 3873–3890 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Holden, H., Risebro, N. H.: Front Tracking for Hyperbolic Conservation Laws. Springer, Berlin (2011)

  36. Illner R., Wick J.: On statistical and measure-valued solutions of differential equations. J. Math. Anal. Appl., 157(2), 351–365 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Isserlis L.: On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12, 134–139 (1918)

    Article  Google Scholar 

  38. Klenke, A.: Probability Theory. A Comprehensive Course. 2nd edn., Springer, London (2014)

  39. Kruzkov S. N.: First order quasilinear equations in several independent variables. Math USSR SB, 10(2), 217–243 (1970)

    Article  Google Scholar 

  40. Lim H., Yu Y., Glimm J., Li X. L., Sharp D. H.: Chaos, transport and mesh convergence for fluid mixing. Acta Math. Appl. Sin., 24(3), 355–368 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Panov, E. Yu.: On the statistical solutions of the Cauchy problem for a first-order quasilinear equation (Russian). Mat. Model., 14(3), 17–26 (2002)

  42. Rasmussen, C. E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006). http://www.gaussianprocess.org/gpml/chapters/

  43. Schochet S.: Examples of measure-valued solutions. Commun. Partial Differ. Equ. 14(5), 545–575 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. Stuart A. M.: Inverse problems: a Bayesian perspective. Acta Num. 19, 451–559 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics. vol. 58. American Mathematical Society, Providence (2003)

  46. Øksendal, B.: Stochastic Differential Equations. An Introduction with Applications. 6th edn., Springer, Berlin (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mishra.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fjordholm, U.S., Lanthaler, S. & Mishra, S. Statistical Solutions of Hyperbolic Conservation Laws: Foundations. Arch Rational Mech Anal 226, 809–849 (2017). https://doi.org/10.1007/s00205-017-1145-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1145-9

Navigation