Skip to main content
Log in

Gaussian Curvature as an Identifier of Shell Rigidity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In the paper we deal with shells with non-zero Gaussian curvature. We derive sharp Korn’s first (linear geometric rigidity estimate) and second inequalities on that kind of shell for zero or periodic Dirichlet, Neumann, and Robin type boundary conditions. We prove that if the Gaussian curvature is positive, then the optimal constant in the first Korn inequality scales like h, and if the Gaussian curvature is negative, then the Korn constant scales like h 4/3, where h is the thickness of the shell. These results have a classical flavour in continuum mechanics, in particular shell theory. The Korn first inequalities are the linear version of the famous geometric rigidity estimate by Friesecke et al. for plates in Arch Ration Mech Anal 180(2):183–236, 2006 (where they show that the Korn constant in the nonlinear Korn’s first inequality scales like h 2), extended to shells with nonzero curvature. We also recover the uniform Korn–Poincaré inequality proven for “boundary-less” shells by Lewicka and Müller in Annales de l’Institute Henri Poincare (C) Non Linear Anal 28(3):443–469, 2011 in the setting of our problem. The new estimates can also be applied to find the scaling law for the critical buckling load of the shell under in-plane loads as well as to derive energy scaling laws in the pre-buckled regime. The exponents 1 and 4/3 in the present work appear for the first time in any sharp geometric rigidity estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciarlet, P.G.: Lectures on Three-Dimensional Elasticity, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Vol. 71, Springer-Verlag, Berlin, 1983

  2. Ciarlet, P.G.: Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity, Series Studies in Mathematics and its Applications, North-Holland, Amsterdam, 1988. Russian translation : 1992 (“Mir”, Moscow). Chinese translation : 1992 (Academia Sinica, Beijing)

  3. Ciarlet, P.G.: Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis. Masson, Paris, and Springer-Verlag, Heidelberg, 1990

  4. Ciarlet, P.G.: Mathematical Elasticity, Vol. II : Theory of Plates, Series Studies in Mathematics and its Applications, North-Holland, Amsterdam, 1997. Romanian translation : 2002 (Editura Academiei Române, Bucuresti)

  5. Ciarlet, P.G.: Introduction to Linear Shell Theory, Gauthier-Villars and Elsevier, Paris, 1998

  6. Ciarlet, P.G.: Mathematical Elasticity, Vol. III : Theory of Shells, Series Studies in Mathematics and its Applications, North-Holland, Amsterdam, 2000

  7. Ciarlet, P.G., Rabier, P.: Les Équations de von Kármán, Lecture Notes in Mathematics, Vol. 826, Springer-Verlag, Berlin, 1980. Russian translation: (“Mir”, Moscow), 1983

  8. Conti S., Dolzmann G., Müller S.: Korn’s second inequality and geometric rigidity with mixed growth conditions. Calc. Var. PDE. 50, 437–454 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conti S., Maggi F.: Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187(1), 1–48 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dauge M., Suri M.: On the asymptotic behaviour of the discrete spectrum in buckling problems for thin plates. Math. Methods Appl. Sci. 29, 789–817 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Evans, L.C.: Partial Differential Equations. American Mathematical Society; 2 edition, March 3, 2010

  12. Friedrichs K.O.: On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. Math. 48(2), 441–471 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  13. Friesecke G., James R.D., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461– (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friesecke G., James R.D., Müller S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Friesecke G., James R.D., Mora M.G., Müller S.: Derivation of nonlinear bending theory for shells from three dimensional nonlinear elasticity by Gamma-convergence. C. R. Acad. Sci. Paris, Sér. I. 336, 697–702 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grabovsky Y., Harutyunyan D.: Exact scaling exponents in Korn and Korn-type inequalities for cylindrical shells. SIAM J. Math. Anal. 46(5), 3277–3295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grabovsky Y., Harutyunyan D.: Rigurous derivation of the formula for the buckling load in axially compressed circular cylindrical shells. J. Elast. 120(2), 249–276 (2015)

    Article  MATH  Google Scholar 

  18. Grabovsky Y., Harutyunyan D.: Scaling instability of the buckling load in axially compressed circular cylindrical shells. J. Nonlinear Sci. 26(1), 83–119 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Grabovsky, Y., Harutyunyan, D.: Korn inequalities for shells with zero Gaussian curvature. Annales de l’Institute Henri Poincare (C) Non Linear Analysis, accepted http://arxiv.org/abs/1602.03601.

  20. Grabovsky Y., Truskinovsky L.: The flip side of buckling. Cont. Mech. Thermodyn. 19(3-4), 211–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harutyunyan D.: New asyptotically sharp Korn and Korn-like inequalities in thin domains. J. Elast. 117(1), 95–109 (2014)

    Article  MATH  Google Scholar 

  22. Harutyunyan, D.: Optimal Korn inequalities for shells with nonconstant thickness. In preparation.

  23. Horgan C.O.: Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37(4), 491–511 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hornung, P., Lewicka, M., Pakzad, R.: Infinitesimal isometries on developable surfaces and asymptotic theories for thin developable shells. J. Elast. 111(1), 1–19, 2013

  25. Hornunag, P., Velcić, I.: Regularity of intrinsically convex W 2,2 surfaces and a derivation of a homogenized bending theory of convex shells. preprint

  26. Kohn, Robert V.: New integral estimates for deformations in terms of their nonlinear strain. Arch. Ration. Mech. Anal. 78, 131–172, 1982

  27. Kondratiev, V., Oleinik, O.: On Korn’s inequalities, C.R. Acad. Sci. Paris. 308 Series I. 483–487, 1989

  28. Kondratiev, V.A., Oleinik, O.A.: Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities. Uspekhi Mat. Nauk. 43(5(263)), 55–98, 1988; Russian Math. Surveys 43(5), 65–119, 1988

  29. Korn A.: Solution générale du probléme d’équilibre dans la théorie de l’élasticité dans le cas oú les eórts sont donnés á la surface. Ann. Fac. Sci. Toulouse 10(1), 165–269 (1908)

    Article  MATH  Google Scholar 

  30. Korn, A.: Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen, Bull. Int. Cracovie Akademie Umiejet, Classe des Sci. Math. Nat. 705–724, 1909

  31. Le Dret H., Raoult A.: The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74, 549–578 (1995)

    MathSciNet  MATH  Google Scholar 

  32. Le Dret H., Raoult A.: The membrane shell model in nonlinear elasticity: A variational asymptotic derivation. J. Nonlinear Sci. 6(1), 59–84 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Lee, Jeffrey M.: Manifolds and Differential Geometry. American Mathematical Society (Graduate Studies in Matematics), 2009. ISBN: 978–0821848159.

  34. Lewicka, M., Li, H.: Convergence of equilibria for incompressible elastic plates in the von Karman regime. Commun. Pure Appl. Anal., 14(1) January 2015

  35. Lewicka, M., Mora, M.G., Pakzad, M.R: Shell theories arising as low energy \({\Gamma}\)-limit of 3D nonlinear elasticity, Ann. Scoula Norm. Sup. Pisa Cl. Sci. (5). 9, 1–43, 2010

  36. Lewicka M., Müller S.: On the uniform Korn–Poincaré inequality in thin domains. Annales de l’Institute Henri Poincare (C) Non Linear Anal. 28(3), 443–469 (2011)

    Article  ADS  MATH  Google Scholar 

  37. Lewicka, M., Müller, S.: On the optimal constants in Korn’s and geometric rigidity estimates in bounded and unbounded domains under Neumann boundary conditions. Accepted in Indiana Mathematics University Journal, 2015

  38. Lewicka, M., Mahadevan, L., Pakzad, M.: The Monge–Ampere constraint: matching of isometries, density and regularity and elastic theories of shallow shells. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis, accepted.

  39. Lewicka, M., Pakzad, M.: The infinite hierarchy of elastic shell models: some recent results and a conjecture. In: Infinite Dimensional Dynamical Systems. Fields Institute Communications Book Series, vol. 64, pp. 407–420. Springer, New York, 2013

  40. Payne L.E., Weinberger H.F.: On Korn’s Inequality. Arch. Ration. Mech. Anal. 8, 89–98 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tovstik, P.E., Smirnov, A.L.: Asymptotic methods in the buckling theory of elastic shells, volume 4 of Series on stability, vibration and control of systems. World Scientific, Singapore 2001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davit Harutyunyan.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harutyunyan, D. Gaussian Curvature as an Identifier of Shell Rigidity. Arch Rational Mech Anal 226, 743–766 (2017). https://doi.org/10.1007/s00205-017-1143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1143-y

Navigation