Skip to main content
Log in

The Lifespan of Small Data Solutions in Two Dimensional Capillary Water Waves

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This article is concerned with the incompressible, irrotational infinite depth water wave equation in two space dimensions, without gravity but with surface tension. We consider this problem expressed in position–velocity potential holomorphic coordinates, and prove that small data solutions have at least cubic lifespan while small localized data leads to global solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard T., Burq N., Zuily C.: On the water-wave equations with surface tension. Duke Math. J., 158(3), 413–499 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alazard, T., Burq, N., Zuily, C.: Strichartz estimates and the Cauchy problem for the gravity water waves equations. ArXiv e-prints, April 2014

  3. Alazard T., Burq N., Zuily C.: Strichartz estimates for water waves. Ann. Sci. Éc. Norm. Supér. (4) 44(5), 855–903 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alazard T., Delort J.-M.: Global solutions and asymptotic behavior for two dimensional gravity water waves. Ann. Sci. Éc. Norm. Supér. (4), 48(5), 1149–1238 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alazard, T., Delort, J.-M.: Sobolev estimates for two dimensional gravity water waves. Astérisque, (374), viii+241, 2015

  6. Ambrose D.M., Masmoudi N.: The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math., 58(10), 1287–1315 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amick C.J., Kirchgässner K.: A theory of solitary water-waves in the presence of surface tension. Arch. Rational Mech. Anal., 105(1), 1–49 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Beyer K., Günther M.: On the Cauchy problem for a capillary drop. I. Irrotational motion. Math. Methods Appl. Sci., 21(12), 1149–1183 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Buffoni B., Groves M.D., Sun S.M., Wahlén E.: Existence and conditional energetic stability of three-dimensional fully localised solitary gravity–capillary water waves. J. Differ. Equ., 254(3), 1006–1096 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Christianson H., Mikyoung Hur V., Staffilani G.: Strichartz estimates for the water-wave problem with surface tension. Commun. Partial Differential Equations, 35(12), 2195–2252 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christodoulou D., Lindblad H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math., 53(12), 1536–1602 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coifman, R.R., Meyer, Y.: Au delà des opérateurs pseudo-différentiels, volume 57 of Astérisque. Société Mathématique de France, Paris, 1978. With an English summary.

  13. Constantin, A.: Nonlinear water waves with applications to wave-current interactions and tsunamis, volume 81 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.

  14. Coutand D., Shkoller S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc., 20(3), 829–930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Delort J.-M.: Long-time Sobolev stability for small solutions of quasi-linear Klein–Gordon equations on the circle. Trans. Am. Math. Soc., 361(8), 4299–4365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dyachenko A.I., Kuznetsov E.A., Spector M.D., Zakharov V.E.: Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A, 221(1), 73–79 (1996)

    Article  ADS  Google Scholar 

  17. Germain P., Masmoudi N., Shatah J.: Global solutions for the gravity water waves equation in dimension 3. Ann. Math. (2), 175(2), 691–754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Germain P., Masmoudi N., Shatah J.: Global existence for capillary water waves. Commun. Pure Appl. Math., 68(4), 625–687 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Groves M.D., Sun S.-M.: Fully localised solitary-wave solutions of the three-dimensional gravity–capillary water-wave problem. Arch. Ration. Mech. Anal., 188(1), 1–91 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Groves M.D., Wahlén E.: On the existence and conditional energetic stability of solitary gravity–capillary surface waves on deep water. J. Math. Fluid Mech., 13(4), 593–627 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hayashi N., Naumkin P.I.: Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations. Am. J. Math., 120(2), 369–389 (1998)

    Article  MATH  Google Scholar 

  22. Hunter, J.K., Ifrim, M., Tataru, D., Wong, T.K.: Long time solutions for a Burgers–Hilbert equation via a modified energy method. ArXiv e-prints, January 2013

  23. Hunter J.K., Ifrim M., Tataru D.: Two dimensional water waves in holomorphic coordinates. Commun. Math. Phys., 346(2), 483–552 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ifrim M., Tataru D.: Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension. Nonlinearity, 28(8), 2661–2675 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Ifrim M., Tataru D.: Two dimensional water waves in holomorphic coordinates II: global solutions. Bull. Soc. Math. France, 144(2), 369–394 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ionescu, A.D., Pusateri, F.: Global analysis of a model for capillary water waves in 2D. ArXiv e-prints, June 2014

  27. Ionescu, A.D., Pusateri, F.: Global regularity for 2D water waves with surface tension. ArXiv e-prints, August 2014

  28. Ionescu A.D., Pusateri F.: Nonlinear fractional Schrödinger equations in one dimension. J. Funct. Anal., 266(1), 139–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ionescu A.D., Pusateri F.: Global solutions for the gravity water waves system in 2D. Invent. Math., 199(3), 653–804 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Kato J., Pusateri F.: A new proof of long-range scattering for critical nonlinear Schrödinger equations. Differ. Integral Equ., 24(9–10), 923–940 (2011)

    MATH  Google Scholar 

  31. Kenig C.E., Stein E.M.: Multilinear estimates and fractional integration. Math. Res. Lett., 6(1), 1–15 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Klainerman S.: Uniform decay estimates and the Lorentz invariance of the classical wave equation. Commun. Pure Appl. Math., 38(3), 321–332 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc., 18(3), 605–654, 2005 (electronic)

  34. Lindblad H.: Well-posedness for the linearized motion of an incompressible liquid with free surface boundary. Commun. Pure Appl. Math., 56(2), 153–197 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lindblad H., Soffer A.: Scattering and small data completeness for the critical nonlinear Schrödinger equation. Nonlinearity, 19(2), 345–353 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Muscalu C.: Paraproducts with flag singularities. I. A case study. Rev. Mat. Iberoam., 23(2), 705–742 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Muscalu C., Tao T., Thiele C.: Multi-linear operators given by singular multipliers. J. Am. Math. Soc., 15(2), 469–496 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nalimov, V.I.: The Cauchy-Poisson problem. Dinamika Splošn. Sredy, (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami), 104–210, 254, 1974

  39. Ovsjannikov, L.V.: To the shallow water theory foundation. Arch. Mech. (Arch. Mech. Stos.), 26, 407–422, 1974. Papers presented at the Eleventh Symposium on Advanced Problems and Methods in Fluid Mechanics, Kamienny Potok, 1973.

  40. Schweizer, B.: A priori estimates for the Euler equation with a free boundary. In: EQUADIFF 2003, pages 401–406. World Sci. Publ., Hackensack, NJ, 2005.

  41. Shatah J.: Normal forms and quadratic nonlinear Klein-Gordon equations. Commun. Pure Appl. Math., 38(5), 685–696 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shatah J., Zeng C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math., 61(5), 698–744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math., 130(1), 39–72 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc., 12(2), 445–495 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math., 177(1), 45–135 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Yosihara H.: Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci., 18(1), 49–96 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yosihara H.: Capillary–gravity waves for an incompressible ideal fluid. J. Math. Kyoto Univ., 23(4), 649–694 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Tataru.

Additional information

Communicated by V. Šverák

The first author was supported by the Simons Foundation.

The second author was partially supported by the NSF Grant DMS-1266182 as well as by the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ifrim, M., Tataru, D. The Lifespan of Small Data Solutions in Two Dimensional Capillary Water Waves. Arch Rational Mech Anal 225, 1279–1346 (2017). https://doi.org/10.1007/s00205-017-1126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1126-z

Navigation