Abstract
We show, among other things, how knowing Schauder or Sobolev-space estimates for the one-dimensional heat equation allows one to derive their multidimensional analogs for equations with coefficients depending only on the time variable with the same constants as in the case of the one-dimensional heat equation. The method is quite general and is based on using the Poisson stochastic process. It also applies to equations involving non-local operators. It looks like no other methods are available at this time and it is a very challenging problem to find a purely analytical approach to proving such results.
This is a preview of subscription content, access via your institution.
References
Evans L.C.: Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19. American Mathematical Society, Providence (1998)
Krylov N.V.: A parabolic Littlewood–Paley inequality with applications to parabolic equations. Topol. Methods Nonlinear Anal. J. Juliusz Schauder Center 4(2), 355–364 (1994)
Krylov N.V.: On L p -theory of stochastic partial differential equations in the whole space. SIAM J. Math. Anal. 27(2), 313–340 (1996)
Krylov N.V.: Introduction to the Theory of Random Processes. American Mathematical Society, Providence (2002)
Krylov N.V.: On factorizations of smooth nonnegative matrix-values functions and on smooth functions with values in polyhedra. Appl. Math. Optim. 58(3), 373–392 (2008)
Krylov N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces. American Mathematical Society, Providence (2008)
Krylov N.V., Priola E.: Elliptic and parabolic second-order PDEs with growing coefficients. Commun. PDEs 35(1), 1–22 (2010)
Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasi-Linear Parabolic Equations. Nauka, Moscow, 1967. (in Russian); English translation: American Mathematical Society, Providence, 1968
Lieberman G.M.: Second Order Parabolic Differential Equations. World Scientific, River Edge (1996)
Priola, E.: L p-parabolic regularity and non-degenerate Ornstein–Uhlenbeck type operators. Geometric Methods in PDEs, Springer INdAM Series, Vol. 13 (Eds. Citti G. et al.) Springer, Berlin, 121–139, 2015
Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn, version 2.1. Corrected third printing, Stochastic Modelling and Applied Probability, Vol. 21. Springer, Berlin, 2005
Sato K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Figalli
N. V. Krylov was partially supported by NSF Grant DMS-1160569 and by a grant from the Simons Foundation (#330456 to Nicolai Krylov). E. Priola was partially supported by the Italian PRIN Project 2010MXMAJR.
Rights and permissions
About this article
Cite this article
Krylov, N.V., Priola, E. Poisson Stochastic Process and Basic Schauder and Sobolev Estimates in the Theory of Parabolic Equations. Arch Rational Mech Anal 225, 1089–1126 (2017). https://doi.org/10.1007/s00205-017-1122-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-017-1122-3