Skip to main content
Log in

Global Well-Posedness of the Boltzmann Equation with Large Amplitude Initial Data

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The global well-posedness of the Boltzmann equation with initial data of large amplitude has remained a long-standing open problem. In this paper, by developing a new \({L^\infty_xL^1_{v}\cap L^\infty_{x,v}}\) approach, we prove the global existence and uniqueness of mild solutions to the Boltzmann equation in the whole space or torus for a class of initial data with bounded velocity-weighted \({L^\infty}\) norm under some smallness condition on the \({L^1_xL^\infty_v}\) norm as well as defect mass, energy and entropy so that the initial data allow large amplitude oscillations. Both the hard and soft potentials with angular cut-off are considered, and the large time behavior of solutions in the \({L^\infty_{x,v}}\) norm with explicit rates of convergence are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baranger C., Mouhot C.: Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Rev. Mat. Iberoamericana 21(3), 819–841 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellomo N., Palczewski A., Toscani G.: Mathematical Topics in Nonlinear Kinetic Theory. World Scientific Publishing, Singapore (1988)

    MATH  Google Scholar 

  3. Briant M., Guo Y.: Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions. J. Differ. Equ. 261(12), 7000–7079 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Carleman T.: Sur la théorie de l’équation intégrodifférentielle de Boltzmann. Acta Math. 60(1), 91–146 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cercignani C., Illner R., Pulvirenti M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994)

    Book  MATH  Google Scholar 

  6. Duan R.J., Yang T., Zhao H.J.: The Vlasov–Poisson–Boltzmann system for soft potentials. Math. Models Methods Appl. Sci. 23(6), 979–1028 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. DiPerna R.J., Lions P.-L.: On the Cauchy problem for Boltzmann equation: global existence and weak stability. Ann. Math. 130, 321–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Desvillettes L., Villani C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems:The Boltzmann equation. Invent. Math. 159, 243–316 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ellis R., Pinsky M.A.: The first and second fluid approximations to the linearized Boltzmann equation. J. Math. Pures Appl. 54(9), 125–156 (1975)

    MathSciNet  MATH  Google Scholar 

  10. Glassey R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996)

    Book  MATH  Google Scholar 

  11. Grad, H.: Asymptotic theory of the Boltzmann equation. In: Laurmann, J.A. (ed.) Rarefied Gas Dynamics, vol. 1, pp. 26–59. Academic Press, New York, 1963

  12. Gualdani, M.P., Mischler, S., Mouhot, C.: Factorization for Non-symmetric Operators and Exponential H-Theorem. arXiv:1006.5523

  13. Guo Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Ration. Mech. Anal. 169(4), 305–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo Y.: Decay and continuity of the Boltzmann equation in Bounded domains. Arch. Rational. Mech. Anal. 197, 713–809 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Guo Y.: Bounded solutions for the Boltzmann equation. Q. Appl. Math. 68(1), 143–148 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, F.M., Wang, Y.: Macroscopic Regularity for the Boltzmann Equation. arXiv:1512.08608

  17. Illner R., Shinbrot M.: Global existence for a rare gas in an infinite vacuum. Comm. Math. Phys. 95, 217–226 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kaniel S., Shinbrot M.: The Boltzmann equation I: uniqueness and local existence. Comm. Math. Phys. 58, 65–84 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kim C.: Boltzmann equation with a large potential in a periodic box. Comm. Partial Differ. Equ. 39, 1393–1423 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu T., Yang T., Yu S.H.: Energy method for the Boltzmann equation. Phys. D 188, 178–192 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lu X.-G., Mouhot C.: On measure solutions of the Boltzmann equation, part II: rate of convergence to equilibrium. J. Differ. Equ. 258(11), 3742–3810 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Strain R.M.: Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinet. Rel. Models 5, 583–613 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Strain R.M., Guo Y.: Exponential decay for soft potentials near Maxwellian. Arch. Rational. Mech. Anal. 187, 287–339 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ukai S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc. Jpn. Acad. 50, 179–184 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ukai S., Yang T.: The Boltzmann equation in the space \({L^2\cap L^\infty_\beta}\): global and time-periodic solutions. Anal. Appl. 4, 263–310 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vidav I.: Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl. 30, 264–279 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  27. Villani, C.: A Review of Mathematical Topics in Collisional Kinetic Theory. Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feimin Huang.

Additional information

Communicated by P.-L. Lions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, R., Huang, F., Wang, Y. et al. Global Well-Posedness of the Boltzmann Equation with Large Amplitude Initial Data. Arch Rational Mech Anal 225, 375–424 (2017). https://doi.org/10.1007/s00205-017-1107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1107-2

Navigation