Skip to main content
Log in

On Stability of Steady Circular Flows in a Two-Dimensional Exterior Disk

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the stability of some exact stationary solutions to the two-dimensional Navier–Stokes equations in an exterior domain to the unit disk. These stationary solutions are known as a simple model of the flow around a rotating obstacle, while their stability has been open due to the difficulty arising from their spatial decay in a scale-critical order. In this paper we affirmatively settle this problem for small solutions. That is, we will show that if these exact solutions are small enough then they are asymptotically stable with respect to small L 2 perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews G.E., Askey R., Roy R.: Special Functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Borchers, W.: Zur Stabilität und Faktorisierungsmethode für die Navier–Stokes Gleichungen inkompressibler viskoser Flüssigkeiten. Habilitationsschrift, Universität Paderborn (1992)

  3. Borchers W., Miyakawa T.: On stability of exterior stationary Navier–Stokes flows. Acta Math. 174, 311–382 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dan W., Shibata Y.: On the \({L_q}\)\({L_r}\) estimates of the Stokes semigroup in a two-dimensional exterior domain. J. Math. Soc. Jpn. 51, 181–207 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dan W., Shibata Y.: Remark on the \({L_q}\)-\({L_\infty}\) estimate of the Stokes semigroup in a 2-dimensional exterior domain. Pac. J. Math. 189, 223–239 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Drazin, P. G., Riley, N.: The Navier–Stokes Equations A Classification of Flows and Exact Solutions. London Mathematical Society Lecture Note Series (No. 334), Cambridge University Press (2006)

  7. Farwig R., Galdi G.P., Kyed M.: Asymptotic structure of a Leray solution to the Navier–Stokes flow around a rotating body. Pac. J. Math. 253, 367–382 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farwig R., Hishida T.: Stationary Navier–Stokes flow around a rotating obstacle. Funkcial. Ekvac. 50, 371–403 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Farwig R., Hishida T.: Asymptotic profile of steady Stokes flow around a rotating obstacle. Manuscripta Math. 136, 315–338 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farwig R., Hishida T.: Leading term at infinity of steady Navier–Stokes flow around a rotating obstacle. Math. Nachr. 284, 2065–2077 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Farwig R., Neustupa J.: On the spectrum of a Stokes-type operator arising from flow around a rotating body. Manuscripta Math. 122, 419–437 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Farwig R., Sohr H.: Weighted L q-theory for the Stokes resolvent in exterior domains. J. Math. Soc. Jpn. 49, 251–288 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Finn R.: On the exterior stationary problem for the Navier–Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Galdi G.P.: Steady flow of a Navier–Stokes fluid around a rotating obstacle. J. Elast. 71, 1–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Galdi, G. P.: Stationary Navier–Stokes Problem in a Two-Dimensional Exterior Domain. Handbook of Differential Equations, Stationary Partial Differential Equations. Vol. I., M. Chipot and P. Quittner, eds., pp. 71–155. North-Holland, Amsterdam (2004)

  16. Galdi G.P., Silvestre A.L.: Strong solutions to the Navier–Stokes equations around a rotating obstacle. Arch. Ration. Mech. Anal. 176, 331–350 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Galdi G. P., Simader C. G.: New estimates for the steady-state Stokes problem in exterior domains with applications to the Navier–Stokes problem. Differ. Integral Equ. 7, 847–861 (1994)

    MathSciNet  MATH  Google Scholar 

  18. Galdi, G.P., Yamazaki, M.: Stability of stationary solutions of two-dimensional Navier–Stokes exterior problem. In: Proceedings on Mathematical Fluid Dynamics and Nonlinear Wave. GAKUTO International Series of Mathematical Sciences and Applications, 37, Gokkotosho (2015)

  19. Gallay Th., Maekawa Y.: Long-time asymptotics for two-dimensional exterior flows with small circulation at infinity. Anal. PDE. 6, 973–991 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Geissert M., Heck H., Hieber M.: L p-theory of the Navier–Stokes flowin the exterior of a moving or rotating obstacle. J. Reine Angew. Math. 596, 45–62 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Guillod, J.: On the asymptotic stability of steady flows with nonzero flux in two-dimensional exterior domains (2016), arXiv:1605.03864 [math.AP]

  22. Heywood J. G.: On stationary solutions of the Navier–Stokes equations as limits of nonstationary solutions. Arch. Ration. Mech. Anal. 37(1), 48–60 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  23. Higaki, M., Maekawa, Y., Nakahara, Y.: On stationary Navier–Stokes flows around a rotating obstacle in two-dimensions. Preprint, arXiv:1701.01215 [math.AP].

  24. Hillairet M., Wittwer P.: On the existence of solutions to the planar exterior Navier–Stokes system. J. Differ. Equ. 255, 2996–3019 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Hishida T.: An existence theorem for the Navier–Stokes flow in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 150, 307–348 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hishida T.: L q estimates of weak solutions to the stationary Stokes equations around a rotating body. J. Math. Soc. Jpn. 58, 743–767 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hishida, T.: Asymptotic Structure of Steady Stokes Flow Around a Rotating Obstacle in Two Dimensions. Preprint, arXiv:1503.02321

  28. Hishida T., Shibata Y.: \({L^p-L^q}\) estimate of the Stokes operator and Navier–Stokes flows in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 193, 339–421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hishida T., Schonbek M. E.: Stability of time-dependent Navier–Stokes flow and algebraic energy decay. Indiana Univ. Math. J. 65(4), 1307–1346 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Iftimie, D., Karch, G., Lacave, C.: Self-Similar Asymptotics of Solutions to the Navier–Stokes System in Two Dimensional Exterior Domain. Preprint, arXiv:1107.2054.

  31. Iftimie D., Karch G., Lacave C.: Asymptotics of solutions to the Navier–Stokes system in exterior domains. J. Lond. Math. Soc. (2) 90, 785–806 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, London (1976)

  33. Karch G., Pilarczyk D.: Asymptotic stability of Landau solutions to Navier–Stokes system. Arch. Ration. Mech. Anal. 202, 115–131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Karch, G., Pilarczyk, D., Schonbek, M.E.: L 2 -Asymptotic Stability of Mild Solutions to the Navier–Stokes System of Equations in \({\mathbb{R}^3}\). Preprint, arXiv:1308.6667

  35. Korolev A., Šverák V.: On the large-distance asymptotics of steady state solutions of the Navier–Stokes equations in 3D exterior domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(2), 303–313 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Kozono H., Ogawa T.: Two-dimensional Navier–Stokes flow in unbounded domains. Math. Ann. 297, 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kozono H., Ogawa T.: Some L p estimate for the exterior Stokes flow and an application to the nonstationary Navier–Stokes equations. Indiana Univ. Math. J. 41, 789–808 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kozono H., Yamazaki M.: Local and global unique solvability of the Navier–Stokes exterior problem with Cauchy data in the space \({L^{n,\infty}}\). Houston J. Math. 21, 755–799 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Kozono H., Yamazaki M.: On a larger class of stable solutions to the Navier–Stokes equations in exterior domains. Math. Z. 228, 751–785 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kozono H., Yamazaki M.: Exterior problem for the stationary Navier–Stokes equations in the Lorentz space. Math. Ann. 310, 279–305 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  42. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications. 16, Birkh\({{\rm {\ddot a}}}\)user Verlag, Basel (1995)

  43. Maekawa Y.: On asymptotic stability of global solutions in the weak L 2 space for the two-dimensional Navier–Stokes equations. Analysis 35(4), 245–257 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Maekawa, Y.: Remark on stability of scale-critical stationary flows in a two-dimensional exterior disk, to appear in Springer Proceedings in Mathematics and Statistics “Mathematics for Nonlinear Phenomena: Analysis and Computation—Proceedings in Honor of Professor Yoshikazu Giga’s 60th birthday”

  45. Maremonti P., Solonnikov V.: On nonstationary Stokes problem in exterior domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24, 395–449 (1997)

    MathSciNet  MATH  Google Scholar 

  46. Masuda K.: Weak solutions of Navier–Stokes equations. Tohoku Math. J. 36, 623–646 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nakatsuka T.: On uniqueness of symmetric Navier–Stokes flows around a body in the plane. Adv. Differ. Equ. 20, 193–212 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Novotny A., Padula M.: Note on decay of solutions of steady Navier–Stokes equations in 3-D exterior domains. Differ. Integral Equ. 8, 1833–1842 (1995)

    MathSciNet  MATH  Google Scholar 

  49. Pileckas K., Russo R.: On the existence of vanishing at infinity symmetric solutions to the plane stationary exterior Navier–Stokes problem. Math. Ann. 352, 643–658 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Russo A.: A note on the exterior two-dimensional steady-state Navier–Stokes problem. J. Math. Fluid Mech. 11, 407–414 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Russo, A.: On the existence of D-solutions of the steady-state Navier–Stokes equations in plane exterior domains (2011), arXiv:1101.1243

  52. Silvestre A. L.: On the existence of steady flows of a Navier–Stokes liquid around a moving rigid body. Math. Methods Appl. Sci. 27, 1399–1409 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Simader, C. G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in L q-spaces for bounded and exterior domains. In: Mathematical Problems Relating to the Navier–Stokes Equations, pp. 1–35. Ser. Adv. Math. Appl. Sci., 11. World Sci. Publishing, River Edge (1992)

  54. Sohr, H.: The Navier–Stokes equations. An elementary functional analytic approach. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (2001)

  55. Yamazaki M.: The Navier–Stokes equations in the weak-L n space with time-dependent external force. Math. Ann. 317, 635–675 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  56. Yamazaki, M.: Unique existence of stationary solutions to the two-dimensional Navier–Stokes equations on exterior domains. In: Mathematical Analysis on the Navier–Stokes Equations and Related Topics, Past and Future—in Memory of Professor Tetsuro Miyakawa, Gakuto International Series in Mathematical Sciences and Applications, Vol. 35, pp. 220–241. Gakkōtosho, Tokyo (2011)

  57. Yamazaki, M.: Rate of convergence to the stationary solution of the Navier–Stokes exterior problem. In: Recent Developments of Mathematical Fluid Mechanics. Springer, London, pp. 459–482 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Maekawa.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maekawa, Y. On Stability of Steady Circular Flows in a Two-Dimensional Exterior Disk. Arch Rational Mech Anal 225, 287–374 (2017). https://doi.org/10.1007/s00205-017-1105-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1105-4

Navigation