Archive for Rational Mechanics and Analysis

, Volume 224, Issue 3, pp 955–984 | Cite as

A Partial Differential Equation for the Rank One Convex Envelope

Article

Abstract

A partial differential equation (PDE) for the rank one convex envelope is introduced. The existence and uniqueness of viscosity solutions to the PDE is established. Elliptic finite difference schemes are constructed and convergence of finite difference solutions to the viscosity solution of the PDE is proven. Computational results are presented and laminates are computed from the envelopes. Results include the Kohn–Strang example, the classical four gradient example, and an example with eight gradients which produces nontrivial laminates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez O., Lasry J.-M., Lions P.-L.: Convex viscosity solutions and state constraints. J. Math. Pures Appl. 76(3), 265–288 (1997)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abbasi, B., Oberman, A.M.: A partial differential equation for the strictly quasiconvex envelope. arXiv:1612.06813, 2016
  3. 3.
    Aranda E., Pedregal P.: Numerical approximation of non-homogeneous, non-convex vector variational problems. Numer. Math. 89(3), 425–444 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aranda E., Pedregal P.: On the computation of the rank-one convex hull of a function. SIAM J. Sci. Comput. 22(5), 1772–1790 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403, 1976/1977Google Scholar
  6. 6.
    Bartels S.: Linear convergence in the approximation of rank-one convex envelopes. ESAIM: Math. Model. Numer. Anal. 38(05), 811–820 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bartels S.: Reliable and efficient approximation of polyconvex envelopes. SIAM J. Numer. Anal. 43(1), 363–385 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ball, J., James, R.: Fine phase mixtures as minimizers of energy. In: Analysis and Continuum Mechanics, pp. 647–686. Springer, Berlin, 1989Google Scholar
  9. 9.
    Ball J.M., Kirchheim B., Kristensen J.: Regularity of quasiconvex envelopes. Calc. Var. Partial Differ. Equ. 11(4), 333–359 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bardi M., Mannucci P.: On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Commun. Pure Appl. Anal. 5(4), 709–731 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bardi, M., Mannucci, P.: Comparison principles and Dirichlet problem for fully nonlinear degenerate equations of Monge–Ampère type. In: Forum Mathematicum, vol. 25, pp. 1291–1330, 2013Google Scholar
  12. 12.
    Barles G., Souganidis P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4(3), 271–283 (1991)MathSciNetMATHGoogle Scholar
  13. 13.
    Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67, 1992Google Scholar
  14. 14.
    Chipot M., Kinderlehrer D.: Equilibrium configurations of crystals. Arch. Ration. Mech. Anal. 103(3), 237–277 (1988)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Caffarelli L.A., Nirenberg L., Spruck J.: The dirichlet problem for the degenerate monge-ampère equation. Rev. Mat. Iberoam. 2(1–2), 19–27 (1986)CrossRefMATHGoogle Scholar
  16. 16.
    Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, 2nd edn, vol. 78. Springer, Berlin, 2008Google Scholar
  17. 17.
    Dolzmann, G.: Numerical computation of rank-one convex envelopes. SIAM J. Numer. Anal. 36(5), 1621–1635, 1999 (electronic)Google Scholar
  18. 18.
    Dolzmann, G.: Variational Methods for Crystalline Microstructure-Analysis and Computation. Number 1803. Springer, 2003Google Scholar
  19. 19.
    De Philippis, G., Figalli, A.: Optimal regularity of the convex envelope. Trans. Am. Math. Soc. 367(6), 4407–4422, 2015Google Scholar
  20. 20.
    Dolzmann G., Walkington N.J.: Estimates for numerical approximations of rank one convex envelopes. Numer. Math. 85(4), 647–663 (2000)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Franěk V., Matoušek J.: Computing d-convex hulls in the plane. Comput. Geom. 42(1), 81–89 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Froese B.D., Oberman A.M.: Convergent filtered schemes for the Monge–Ampère partial differential equation. SIAM J. Numer. Anal. 51(1), 423–444 (2013)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Froese, B.D.: Convergent approximation of surfaces of prescribed Gaussian curvature with weak Dirichlet conditions. arXiv:1601.06315, 2016
  24. 24.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn, vol. 224. Springer, Berlin, 1983Google Scholar
  25. 25.
    Kohn R.V., Strang G.: Optimal design and relaxation of variational problems, i. Commun. Pure Appl. Math. 39(1), 113–137 (1986)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kohn R.V., Strang G.: Optimal design and relaxation of variational problems, ii. Commun. Pure Appl. Math. 39(2), 139–182 (1986)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Morrey C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2(1), 25–53 (1952)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Matoušek J., Plecháč P.: On functional separately convex hulls. Discrete Comput. Geom. 19(1), 105–130 (1998)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Muller, S.: Variational models for microstructure and phase transitions. In: Calculus of Variations and Geometric Evolution Problems (Italy, 1996), pp. 85–210. Springer, Berlin, 1999Google Scholar
  30. 30.
    Motzkin T.S., Wasow W.: On the approximation of linear elliptic differential equations by difference equations with positive coefficients. J. Math. Phys. 31, 253–259 (1953)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Oberman, A.M.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895, 2006 (electronic)Google Scholar
  32. 32.
    Oberman, A.M.: The convex envelope is the solution of a nonlinear obstacle problem. Proc. Am. Math. Soc. 135(6), 1689–1694, 2007 (electronic)Google Scholar
  33. 33.
    Oberman A.M.: Computing the convex envelope using a nonlinear partial differential equation. Math. Models Methods Appl. Sci. 18(5), 759–780 (2008)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Oberman A.M.: Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B, 10(1), 221–238 (2008)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Oberman A., Silvestre L.: The Dirichlet problem for the convex envelope. Trans. Am. Math. Soc. 363(11), 5871–5886 (2011)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Pedregal, P.: Parametrized Measures and Variational Principles, vol. 30. Springer, 1997Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.McGill UniversityMontrealCanada
  2. 2.Department of MathematicsBeihang UniversityBeijingChina

Personalised recommendations