Abstract
In this paper, we consider the zero-viscosity limit of the Navier–Stokes equations in a half space with non-slip boundary condition. Based on the vorticity formulation and the use of conormal derivative, we develop an energy method to justify the zero-viscosity limit for the analytic data.
Similar content being viewed by others
References
Abidi H., Danchin R.: Optimal bounds for the inviscid limit of Navier–Stokes equations. Asymptot. Anal. 38, 35–46 (2004)
Alexandre R., Wang Y., Xu C.-J., Yang T.: Well-posedness of the Prandtl Equation in Sobolev Spaces. J. Amer. Math. Soc. 28, 745–784 (2015)
Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften 343. Springer, Berlin Heidelberg, 2011
Beale J.T., Majda A.: Rates of convergence for viscous splitting of the Navier–Stokes. Math. Comp. 37, 243–259 (1981)
Chemin J.-Y., Gallagher I., Paicu M.: Global regularity for some classes of large solutions to the Navier–Stokes equations. Ann. Math. 173, 983–1012 (2011)
Constantin, P., Kukavica, I., Vicol, V.: On the inviscid limit of the Navier–Stokes equations. arXiv:1403.5748v2
Gerard-Varet D., Dormy E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23, 591–609 (2010)
Gérard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity. arXiv:1305.0221
Grard-Varet D., Nguyen T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal., 77, 71–88 (2012)
Guo Y., Nguyen T.: A note on Prandtl boundary layers. Commun. Pure Appl. Math. 64, 1416–1438 (2011)
Guo, Y., Nguyen, T.: Prandtl boundary layer expansions of steady Navier–Stokes flows over a moving plate. arXiv:1411.6984v1
Iftimie D., Planas G.: Inviscid limits for the Navier–Stokes equations with Navier friction boundary conditions. Nonlinearity 19, 899–918 (2006)
Iftimie D., Sueur F.: Viscous boundary layer for the Navier–Stokes equations with the Navier slip conditions. Arch. Ration. Mech. Anal. 199, 145–175 (2011)
Kato T.: Nonstationary flows of viscous and ideal fluids in R 3. J. Funct. Anal. 9, 296–305 (1972)
Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), pp. 85–98. Mathematical Sciences Research Institute Publications, 2. Springer, New York, 1984
Kelliher J.P.: On Kato’s conditions for vanishing viscosity. Indiana Univ. Math. J. 56, 1711–1721 (2007)
Kelliher J.P.: On the vanishing viscosity limit in a disk. Math. Ann. 343, 701–726 (2009)
Kukavica I., Masmoudi N., Vicol V., Wong T.: On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions. SIAM J. Math. Anal. 46, 3865–3890 (2014)
Liu, C., Wang, Y., Yang, T.: On the ill-posedness of the Prandtl equations in three space dimensions, arXiv:1412.2843
Liu, C., Wang, Y., Yang, T.: Global existence of weak solutions to the three-dimensional Prandtl equations with a special structure. arXiv:1509.03856
Lombardo M. C., Cannone M., Sammartino M.: Well-posedness of the boundary layer equations. SIAM J. Math. Anal. 35, 987–1004 (2003)
Maekawa Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Math. 67, 1045–1128 (2014)
Masmoudi N., Rousset F.: Uniform regularity for the Navier–Stokes equation with Navier boundary condition. Arch. Ration. Mech. Anal. 203, 529–575 (2012)
Masmoudi, N., Rousset, F.: Uniform regularity and vanishing viscosity limit for the free surface Navier–Stokes equations. arXiv:1202.0657
Masmoudi N., Wong T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68, 1683–1741 (2015)
Oleinik, O.A., Samokhin, V.N.: Mathematical Models in Boundary Layer Theory. Applied Mathematics and Mathematical Computation 15. Chapman & Hall/CRC, Boca Raton, 1999
Paicu M., Zhang Z.: Global regularity for the Navier–Stokes equations with some classes of large initial data. Anal. PDE 4, 95–113 (2011)
Prandtl, L.: Uber flüssigkeits-bewegung bei sehr kleiner reibung. Actes du 3me Congrés international dse Mathématiciens. Teubner, Leipzig, Heidelberg, pp. 484–491, 1904
Sammartino M., Caflisch R.E.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192, 433–461 (1998)
Sammartino M., Caflisch R.E.: Zero viscosity limit for analytic solutions of the Navier–Stokes equation on a half-space. II. Construction of the Navier–Stokes solution. Commun. Math. Phys. 192, 463–491 (1998)
Swann H.S.G.: The convergence with vanishing viscosity of nonstationary Navier–Stokes flow to ideal flow in R 3. Trans. Am. Math. Soc. 157, 373–397 (1971)
Temam R., Wang X.: On the behavior of the solutions of the Navier–Stokes equations at vanishing viscosity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25, 807–828 (1997)
Wang X.: A Kato type theorem on zero viscosity limit of Navier–Stokes flows. Indiana Univ. Math. J. 50, 223–241 (2001)
Wang L., Xin Z., Zang A.: Vanishing viscous limits for 3D Navier–Stokes equations with a Navier slip boundary condition. J. Math. Fluid Mech. 14, 791–825 (2012)
Wang Y., Xin Z., Yong Y.: Uniform regularity and vanishing viscosity limit for the compressible Navier–Stokes with general Navier-Slip boundary conditions in three-dimensional domains. SIAM J. Math. Anal. 47, 4123–4191 (2015)
Xiao Y., Xin Z.: On the vanishing viscosity limit for the 3D Navier–Stokes equations with a slip boundary condition. Commun. Pure Appl. Math. 60, 1027–1055 (2007)
Xin Z., Zhang L.: On the global existence of solutions to the Prandtl system. Adv. Math. 181, 88–133 (2004)
Zhang P., Zhang Z.: Long time well-posedness of Prandtl system with small and analytic initial data. J. Funct. Anal. 270, 2591–2615 (2016)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by N. Masmoudi
Rights and permissions
About this article
Cite this article
Wang, C., Wang, Y. & Zhang, Z. Zero-Viscosity Limit of the Navier–Stokes Equations in the Analytic Setting. Arch Rational Mech Anal 224, 555–595 (2017). https://doi.org/10.1007/s00205-017-1083-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-017-1083-6