Skip to main content

Steady Prandtl Boundary Layer Expansions Over a Rotating Disk

Abstract

This paper concerns the validity of the Prandtl boundary layer theory for steady, incompressible Navier-Stokes flows over a rotating disk. We prove that the Navier-Stokes flows can be decomposed into Euler and Prandtl flows in the inviscid limit. In so doing, we develop a new set of function spaces and prove several embedding theorems which capture the interaction between the Prandtl scaling and the geometry of our domain.

This is a preview of subscription content, access via your institution.

References

  1. Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexandre R., Wang Y.-G., Xu C.-J., Yang T.: Well-posedness of the Prandtl equation in Sobolev spaces. J. Am. Math. Soc. 28(3), 745–784 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asano, A.: Zero viscosity limit of incompressible Navier-Stokes equations. In: Conference at the Fourth Workshop on Mathematical Aspects of Fluid and Plasma Dynamics, Kyoto (1991)

  4. Ciarlet, P.: On Korn’s inequality. Chin. Ann. Math. Ser. B 31(5), 607–618 (2010)

  5. Dalibard A-L., Masmoudi N.: Phenomene de separation pour l’equation de Prandtl stationnaire. Seminaire Laurent Schwartz-EDP et applications, 1–18 (2014–2015)

  6. Di Nezza, E., Palatucci, G., Valdinoci E.: Hitchhiker’s guide to fractional Sobolev spaces. Bulletin des Sciences Mathematiques 136, 5–11 (2012)

  7. E, W.: Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation. Acta Math. Sin. (Engl. Ser.) 16(2), 207–218 (2000)

  8. E, W., Engquist B.: Blowup of solutions of the unsteady Prandtl’s equation. Commun. Pure Appl. Math. 50(12), 1287–1293 (1997)

  9. Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010)

  10. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 2nd edn. Springer Monographs in Mathematics (2011)

  11. Gerard-Varet D., Dormy E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gerard-Varet D., Masmoudi N.: Well-posedness for the Prandtl system without analyticity or monotonicity. Annales Scientifiques de L’Ecole Normale Superieure. Serie. 4, 48, fascicule 6, 1273–1325 (2015)

    MATH  Google Scholar 

  13. Gerard-Varet D., Nguyen T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77(1–2), 71–88 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Gie G-M., Jung C-Y., Temam R.: Recent progresses in the boundary layer theory. Discret Contin. Dyn. Syst. A 36(5), 2521–2583 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Grenier E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of symmetric shear flows in a two-dimensional channel. Adv. Math.

  17. Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165(16), 3085–3146 (2016)

  18. Grenier E., Guo Y., Nguyen T.: Spectral instability of Prandtl boundary layers: an overview. Anal. (Berlin) 35(4), 343–355 (2015)

    MATH  Google Scholar 

  19. Guo, Y., Nguyen, T.: Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate. arXiv:1411.6984 (2014)

  20. Guo Y., Nguyen T.: A note on the Prandtl boundary layers. Commun. Pure Appl. Math. 64(10), 1416–1438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ignatova M., Vicol V.: Almost global existence for the Prandtl boundary layer equations. Arch. Ration. Mech. Anal. 220, 809–848 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kato, T.: Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. Seminar on nonlinear partial differential equations (Berkeley, Calif. 1983), pp. 85–98. Math. Sci. Res. Inst. Publ., 2. Springer, Berlin (1984)

  23. Kukavica I., Vicol V.: On the local existence of analytic solutions to the Prandtl boundary layer equations. Commun. Math. Sci. 11(1), 269–292 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kundu, P., Cohen, I.: Fluid Mechanics, 3rd edn. Elsevier, London (2004)

  25. Lombardo M. C., Cannone M., Sammartino M.: Well-posedness of the boundary layer equations. SIAM J. Math. Anal. 35(4), 987–1004 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Maekawa Y.: On the inviscid problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure. Appl. Math 67, 1045–1128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Masmoudi N., Wong T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure. Appl. Math. 68, 1683–1741 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mazzucato A., Taylor M.: Vanishing viscocity plane parallel channel flow and related singular perturbation problems. Anal. PDE 1(1), 35–93 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Oleinik, O.A., Samokhin, V.N.: Mathematical Models in Boundary Layer Theory. Applied Mathematics and Mathematical Computation, 15. Champan and Hall/ CRC, Boca Raton, FL (1999)

  30. Oleinik O.A.: On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid. J. Appl. Math. Mech. 30, 951–974 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  31. Orlt, M.: Regularity for Navier-Stokes in domains with corners. Ph.D. Thesis (1998) (in German)

  32. Orlt, M., Sandig, A.M.: Regularity of viscous Navier-Stokes flows in non smooth domains. Boundary value problems and integral equations in non smooth domains (Luminy 1993). Lecture Notes in Pure and Applied Mathematics, vol. 167. Dekker, New York (1995)

  33. Sammartino M., Caflisch R.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space: I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998)

    Article  MATH  Google Scholar 

  34. Sammartino M., Caflisch R.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space: II. Construction of the Navier-Stokes soution. Commun. Math. Phys. 192(2), 463–491 (1998)

    Article  MATH  Google Scholar 

  35. Schlichting, H., Gersten, K.: Boundary Layer Theory, 8th edn. Springer, Berlin (2000)

  36. Xin Z., Zhang L.: On the global existence of solutions to the Prandtl’s system. Adv. Math. 181(1), 88–133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Iyer.

Additional information

Communicated by V. Šverák

Partially supported by NSF Grant 1209437.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, S. Steady Prandtl Boundary Layer Expansions Over a Rotating Disk. Arch Rational Mech Anal 224, 421–469 (2017). https://doi.org/10.1007/s00205-017-1080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1080-9