Abstract
This paper concerns the validity of the Prandtl boundary layer theory for steady, incompressible Navier-Stokes flows over a rotating disk. We prove that the Navier-Stokes flows can be decomposed into Euler and Prandtl flows in the inviscid limit. In so doing, we develop a new set of function spaces and prove several embedding theorems which capture the interaction between the Prandtl scaling and the geometry of our domain.
This is a preview of subscription content, access via your institution.
References
Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959)
Alexandre R., Wang Y.-G., Xu C.-J., Yang T.: Well-posedness of the Prandtl equation in Sobolev spaces. J. Am. Math. Soc. 28(3), 745–784 (2015)
Asano, A.: Zero viscosity limit of incompressible Navier-Stokes equations. In: Conference at the Fourth Workshop on Mathematical Aspects of Fluid and Plasma Dynamics, Kyoto (1991)
Ciarlet, P.: On Korn’s inequality. Chin. Ann. Math. Ser. B 31(5), 607–618 (2010)
Dalibard A-L., Masmoudi N.: Phenomene de separation pour l’equation de Prandtl stationnaire. Seminaire Laurent Schwartz-EDP et applications, 1–18 (2014–2015)
Di Nezza, E., Palatucci, G., Valdinoci E.: Hitchhiker’s guide to fractional Sobolev spaces. Bulletin des Sciences Mathematiques 136, 5–11 (2012)
E, W.: Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation. Acta Math. Sin. (Engl. Ser.) 16(2), 207–218 (2000)
E, W., Engquist B.: Blowup of solutions of the unsteady Prandtl’s equation. Commun. Pure Appl. Math. 50(12), 1287–1293 (1997)
Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010)
Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 2nd edn. Springer Monographs in Mathematics (2011)
Gerard-Varet D., Dormy E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)
Gerard-Varet D., Masmoudi N.: Well-posedness for the Prandtl system without analyticity or monotonicity. Annales Scientifiques de L’Ecole Normale Superieure. Serie. 4, 48, fascicule 6, 1273–1325 (2015)
Gerard-Varet D., Nguyen T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77(1–2), 71–88 (2012)
Gie G-M., Jung C-Y., Temam R.: Recent progresses in the boundary layer theory. Discret Contin. Dyn. Syst. A 36(5), 2521–2583 (2016)
Grenier E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091 (2000)
Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of symmetric shear flows in a two-dimensional channel. Adv. Math.
Grenier, E., Guo, Y., Nguyen, T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165(16), 3085–3146 (2016)
Grenier E., Guo Y., Nguyen T.: Spectral instability of Prandtl boundary layers: an overview. Anal. (Berlin) 35(4), 343–355 (2015)
Guo, Y., Nguyen, T.: Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate. arXiv:1411.6984 (2014)
Guo Y., Nguyen T.: A note on the Prandtl boundary layers. Commun. Pure Appl. Math. 64(10), 1416–1438 (2011)
Ignatova M., Vicol V.: Almost global existence for the Prandtl boundary layer equations. Arch. Ration. Mech. Anal. 220, 809–848 (2016)
Kato, T.: Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. Seminar on nonlinear partial differential equations (Berkeley, Calif. 1983), pp. 85–98. Math. Sci. Res. Inst. Publ., 2. Springer, Berlin (1984)
Kukavica I., Vicol V.: On the local existence of analytic solutions to the Prandtl boundary layer equations. Commun. Math. Sci. 11(1), 269–292 (2013)
Kundu, P., Cohen, I.: Fluid Mechanics, 3rd edn. Elsevier, London (2004)
Lombardo M. C., Cannone M., Sammartino M.: Well-posedness of the boundary layer equations. SIAM J. Math. Anal. 35(4), 987–1004 (2003)
Maekawa Y.: On the inviscid problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure. Appl. Math 67, 1045–1128 (2014)
Masmoudi N., Wong T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure. Appl. Math. 68, 1683–1741 (2015)
Mazzucato A., Taylor M.: Vanishing viscocity plane parallel channel flow and related singular perturbation problems. Anal. PDE 1(1), 35–93 (2008)
Oleinik, O.A., Samokhin, V.N.: Mathematical Models in Boundary Layer Theory. Applied Mathematics and Mathematical Computation, 15. Champan and Hall/ CRC, Boca Raton, FL (1999)
Oleinik O.A.: On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid. J. Appl. Math. Mech. 30, 951–974 (1967)
Orlt, M.: Regularity for Navier-Stokes in domains with corners. Ph.D. Thesis (1998) (in German)
Orlt, M., Sandig, A.M.: Regularity of viscous Navier-Stokes flows in non smooth domains. Boundary value problems and integral equations in non smooth domains (Luminy 1993). Lecture Notes in Pure and Applied Mathematics, vol. 167. Dekker, New York (1995)
Sammartino M., Caflisch R.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space: I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998)
Sammartino M., Caflisch R.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space: II. Construction of the Navier-Stokes soution. Commun. Math. Phys. 192(2), 463–491 (1998)
Schlichting, H., Gersten, K.: Boundary Layer Theory, 8th edn. Springer, Berlin (2000)
Xin Z., Zhang L.: On the global existence of solutions to the Prandtl’s system. Adv. Math. 181(1), 88–133 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by V. Šverák
Partially supported by NSF Grant 1209437.
Rights and permissions
About this article
Cite this article
Iyer, S. Steady Prandtl Boundary Layer Expansions Over a Rotating Disk. Arch Rational Mech Anal 224, 421–469 (2017). https://doi.org/10.1007/s00205-017-1080-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-017-1080-9