Archive for Rational Mechanics and Analysis

, Volume 223, Issue 3, pp 1427–1484 | Cite as

Relative Energy for the Korteweg Theory and Related Hamiltonian Flows in Gas Dynamics

  • Jan Giesselmann
  • Corrado Lattanzio
  • Athanasios E. TzavarasEmail author


We consider a Euler system with dynamics generated by a potential energy functional. We propose a form for the relative energy that exploits the variational structure and we derive a relative energy identity. When applied to specific energies, this yields relative energy identities for the Euler–Korteweg, the Euler–Poisson, the Quantum Hydrodynamics system, and low order approximations of the Euler–Korteweg system. For the Euler–Korteweg system we prove a stability theorem between a weak and a strong solution and an associated weak-strong uniqueness theorem. In the second part we focus on the Navier–Stokes–Korteweg system (NSK) with non-monotone pressure laws, and prove stability for the NSK system via a modified relative energy approach. We prove the continuous dependence of solutions on initial data and the convergence of solutions of a low order model to solutions of the NSK system. The last two results provide physically meaningful examples of how higher order regularization terms enable the use of the relative energy framework for models with energies which are not poly- or quasi-convex, compensated by higher-order gradients.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonelli P., Marcati P.: On the finite energy weak solutions to a system in quantum fluid dynamics. Commun. Math. Phys. 287, 657–686 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Antonelli P., Marcati P.: The quantum hydrodynamics system in two space dimensions. Arch. Ration. Mech. Anal. 203, 499–527 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benzoni-Gavage S., Danchin R., Descombes S., Jamet D.: Structure of Korteweg models and stability of diffuse interfaces. Interf. Free Bound. 7, 371–414 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benzoni-Gavage S., Danchin R., Descombes S.: On the well-posedness for the Euler–Korteweg model in several space dimensions. Indiana Univ. Math. J. 56, 1499–1579 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Benzoni-Gavage, S.: Propagating phase boundaries and capillary fluids. Lecture Notes. 3ème cycle. Levico, 2010, pp. 57Google Scholar
  6. 6.
    Brandon, D., Lin, T., Rogers, R.C.: Phase transitions and hysteresis in nonlocal and order-parameter models. Meccanica 30, 541–565 (1995). Microstructure and phase transitions in solids (Udine, 1994)Google Scholar
  7. 7.
    Braack M., Prohl A.: Stable discretization of a diffuse interface model for liquid-vapor flows with surface tension. ESAIM: Math. Model. Numer. Anal. 47, 401–420 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ballew J., Trivisa K.: Weakly dissipative solutions and weak-strong uniqueness for the Navier–Stokes–Smoluchowski system. Nonlinear Anal. 91, 1–19 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brenier Y.: Topology-preserving diffusion of divergence-free vector fields and magnetic relaxation. Commun. Math. Phys. 330, 757–770 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Charve F.: Local in time results for local and non-local capillary Navier–Stokes systems with large data. J. Differ. Equ. 256, 2152–2193 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dafermos C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dafermos C.M.: Stability of motions of thermoelastic fluids. J. Thermal Stress. 2, 127–134 (1979)CrossRefGoogle Scholar
  13. 13.
    Dafermos C.M.: Quasilinear hyperbolic systems with involutions. Arch. Ration. Mech. Anal. 94, 373–389 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dafermos, C.M.: Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edn. Springer, Berlin (2010)Google Scholar
  15. 15.
    DiPerna R.J.: Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J. 28, 137–188 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Donatelli D., Feireisl E., Marcati P.: Well/ill posedness for the Euler–Korteweg–Poisson system and related problems. Commun. Partial Differ. Equ. 40, 1314–1335 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry-Methods and Applications. Part II. The Geometry and Topology of Manifolds. Graduate Texts in Mathematics, Vol. 104. Springer, New York 1985Google Scholar
  18. 18.
    Dunn J.E., Serrin J.: On the thermomechanics of interstitial working. Arch. Ration. Mech. Anal. 88, 95–133 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Engel P., Viorel A., Rohde C.: A low-order approximation for viscous-capillary phase transition dynamics. Port. Math. 70, 319–344 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Feireisl E., Novotný A.: Weak-strong uniqueness property for the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 204, 683–706 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gelfand, I.M., Fomin, S.V.: Calculus of Variations, Prentice Hall, New York 1963Google Scholar
  22. 22.
    Giesselmann J.: A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity. SIAM J. Math. Anal. 46, 3518–3539 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Giesselmann J., Makridakis C., Pryer T.: Energy consistent dg methods for the Navier–Stokes–Korteweg system. Math. Comput. 83, 2071–2099 (2014)CrossRefzbMATHGoogle Scholar
  24. 24.
    Hamilton R.S.: The inverse function theorem of Nash and Moser. Bull. AMS 7, 65–222 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ju Q., Li H., Li Y., Jiang S.: Quasi-neutral limit of the two-fluid Euler–Poisson system. Commun. Pure Appl. Anal. 9, 1577–1590 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kotschote M.: Strong solutions for a compressible fluid model of Korteweg type. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 679–696 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lattanzio C., Tzavaras A.E.: Structural properties of stress relaxation and convergence from viscoelasticity to polyconvex elastodynamics. Arch. Ration. Mech. Anal. 180, 449–492 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lattanzio C., Tzavaras A.E.: Relative entropy in diffusive relaxation. SIAM J. Math. Anal. 45, 1563–1584 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lattanzio, C., Tzavaras, A.E.: From gas dynamics with large friction to gradient flows describing diffusion theories. (2016) (preprint)Google Scholar
  30. 30.
    Leger N., Vasseur A.: Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations. Arch. Ration. Mech. Anal. 201, 271–302 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Luo T., Smoller J.: Existence and non-linear stability of rotating star solutions of the compressible Euler–Poisson equations. Arch. Ration. Mech. Anal. 191, 447–496 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, Texts in Applied Mathematics, Vol. 17, 2nd edn. Springer, New York 1999Google Scholar
  33. 33.
    Neusser J., Rohde C., Schleper V.: Relaxation of the Navier–Stokes–Korteweg equations for compressible two-phase flow with phase transition. Int. J. Numer. Method. Fluid. 79, 615–639 (2015)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Otto F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26, 101–174 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Peng Y., Wang Y.: Convergence of compressible Euler–Poisson equations to incompressible type Euler equations. Asymp. Anal. 41, 141–160 (2005)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Ren X., Truskinovsky L.: Finite scale microstructures in nonlocal elasticity. J. Elasticity 59, 319–355 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Rohde, C.: A local and low-order Navier–Stokes–Korteweg system. In: Nonlinear partial differential equations and hyperbolic wave phenomena, vol. 526 of Contemp. Math., pp. 315–337. Am. Math. Soc. Providence, RI 2010Google Scholar
  38. 38.
    Solci M., Vitali E.: Variational models for phase separation. Interf. Free Bound. 5, 27–46 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Tian L., Xu Y., Kuerten J.G.M., Vander Vegt J.J.W.: A local discontinuous Galerkin method for the propagation of phase transition in solids and fluids. J. Sci. Comput. 9(3), 688–720 (2014)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Applied Analysis and Numerical SimulationUniversity of StuttgartStuttgartGermany
  2. 2.Dipartimento di Ingegneria e Scienze dell’Informazione e MatematicaUniversità degli Studi dell’AquilaCoppito (L’Aquila)Italy
  3. 3.Computer, Electrical, Mathematical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
  4. 4.Institute for Applied and Computational MathematicsFoundation for Research and TechnologyHeraklionGreece

Personalised recommendations