Skip to main content
Log in

Regularity and Energy Conservation for the Compressible Euler Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We give sufficient conditions on the regularity of solutions to the inhomogeneous incompressible Euler and the compressible isentropic Euler systems in order for the energy to be conserved. Our strategy relies on commutator estimates similar to those employed by Constantin et al. for the homogeneous incompressible Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buckmaster T., De Lellis C., Isett P., Székelyhidi L. Jr.: Anomalous dissipation for 1/5-Hölder Euler flows. Ann. Math. (2) 182(1), 127–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buckmaster, T., De Lellis, C., Székelyhidi, Jr., L.: Dissipative Euler flows with Onsager-critical spatial regularity. Comm. Pure Appl. Math. (2015)

  3. Cheskidov A., Constantin P., Friedlander S., Shvydkoy R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21(6), 1233–1252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chiodaroli E.: A counterexample to well-posedness of entropy solutions to the compressible Euler system. J. Hyperbolic Differ. Equ. 11(3), 493–519 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chiodaroli E., De Lellis C., Kreml O.: Global ill-posedness of the isentropic system of gas dynamics. Comm. Pure Appl. Math. 68(7), 1157–1190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin, P.,W. E, Titi, E. S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Comm. Math. Phys., 165(1), 207–209 (1994)

  7. Danchin R.: On the well-posedness of the incompressible density-dependent Euler equations in the L p framework. J. Differ. Equ. 248(8), 2130–2170 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Danchin R., Fanelli F.: The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces. J. Math. Pures Appl. (9) 96(3), 253–278 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Lellis C., Székelyhidi L. Jr.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duchon J., Robert R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity. 13(1), 249–255 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Eyink G. L.: Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer. Phys. D 78(3–4), 222–240 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feireisl E.: Maximal dissipation and well-posedness for the compressible Euler system. J. Math. Fluid Mech. 16(3), 447–461 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Feireisl E., Liao X., Málek J.: Global weak solutions to a class of non-Newtonian compressible fluids. Math. Methods Appl. Sci., 38(16), 3482–3494 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Frehse, J., Málek, J., Ružicka, M.: Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids. Comm. Partial Differ. Equ., 35(10), 1891–1919 (2010)

  15. Isett, P.: A proof of Onsager’s conjecture. Preprint, 2016

  16. Leslie T. M., Shvydkoy R.: The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations. J. Differ. Equ. 261(6), 3719–3733 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Marsden J. E.: Well-posedness of the equations of a non-homogeneous perfect fluid. Comm. Partial Differ. Equ., 1(3), 215–230 (1976)

    Article  MathSciNet  Google Scholar 

  18. Onsager, L., Statistical hydrodynamics. Nuovo Cimento (9), 6(Supplemento, 2 (Convegno Internazionale di Meccanica Statistica)), 279–287 (1949)

  19. Scheffer V.: An inviscid flow with compact support in space-time. J. Geom. Anal., 3(4), 343–401 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shnirelman A.: Weak solutions with decreasing energy of incompressible Euler equations. Comm. Math. Phys., 210(3), 541–603 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Wróblewska-Kamińska A.: Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces. Discrete Contin. Dyn. Syst. 33(6), 2565–2592 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Wiedemann.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A. et al. Regularity and Energy Conservation for the Compressible Euler Equations. Arch Rational Mech Anal 223, 1375–1395 (2017). https://doi.org/10.1007/s00205-016-1060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1060-5

Navigation