Archive for Rational Mechanics and Analysis

, Volume 223, Issue 3, pp 1375–1395 | Cite as

Regularity and Energy Conservation for the Compressible Euler Equations

  • Eduard Feireisl
  • Piotr Gwiazda
  • Agnieszka Świerczewska-Gwiazda
  • Emil Wiedemann


We give sufficient conditions on the regularity of solutions to the inhomogeneous incompressible Euler and the compressible isentropic Euler systems in order for the energy to be conserved. Our strategy relies on commutator estimates similar to those employed by Constantin et al. for the homogeneous incompressible Euler equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buckmaster T., De Lellis C., Isett P., Székelyhidi L. Jr.: Anomalous dissipation for 1/5-Hölder Euler flows. Ann. Math. (2) 182(1), 127–172 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Buckmaster, T., De Lellis, C., Székelyhidi, Jr., L.: Dissipative Euler flows with Onsager-critical spatial regularity. Comm. Pure Appl. Math. (2015)Google Scholar
  3. 3.
    Cheskidov A., Constantin P., Friedlander S., Shvydkoy R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21(6), 1233–1252 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chiodaroli E.: A counterexample to well-posedness of entropy solutions to the compressible Euler system. J. Hyperbolic Differ. Equ. 11(3), 493–519 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chiodaroli E., De Lellis C., Kreml O.: Global ill-posedness of the isentropic system of gas dynamics. Comm. Pure Appl. Math. 68(7), 1157–1190 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Constantin, P.,W. E, Titi, E. S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Comm. Math. Phys., 165(1), 207–209 (1994)Google Scholar
  7. 7.
    Danchin R.: On the well-posedness of the incompressible density-dependent Euler equations in the L p framework. J. Differ. Equ. 248(8), 2130–2170 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Danchin R., Fanelli F.: The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces. J. Math. Pures Appl. (9) 96(3), 253–278 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    De Lellis C., Székelyhidi L. Jr.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Duchon J., Robert R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity. 13(1), 249–255 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Eyink G. L.: Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer. Phys. D 78(3–4), 222–240 (1994)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Feireisl E.: Maximal dissipation and well-posedness for the compressible Euler system. J. Math. Fluid Mech. 16(3), 447–461 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Feireisl E., Liao X., Málek J.: Global weak solutions to a class of non-Newtonian compressible fluids. Math. Methods Appl. Sci., 38(16), 3482–3494 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Frehse, J., Málek, J., Ružicka, M.: Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids. Comm. Partial Differ. Equ., 35(10), 1891–1919 (2010)Google Scholar
  15. 15.
    Isett, P.: A proof of Onsager’s conjecture. Preprint, 2016Google Scholar
  16. 16.
    Leslie T. M., Shvydkoy R.: The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations. J. Differ. Equ. 261(6), 3719–3733 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Marsden J. E.: Well-posedness of the equations of a non-homogeneous perfect fluid. Comm. Partial Differ. Equ., 1(3), 215–230 (1976)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Onsager, L., Statistical hydrodynamics. Nuovo Cimento (9), 6(Supplemento, 2 (Convegno Internazionale di Meccanica Statistica)), 279–287 (1949)Google Scholar
  19. 19.
    Scheffer V.: An inviscid flow with compact support in space-time. J. Geom. Anal., 3(4), 343–401 (1993)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Shnirelman A.: Weak solutions with decreasing energy of incompressible Euler equations. Comm. Math. Phys., 210(3), 541–603 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Wróblewska-Kamińska A.: Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces. Discrete Contin. Dyn. Syst. 33(6), 2565–2592 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Mathematics of the Academy of Sciences of the Czech RepublicPraha 1Czech Republic
  2. 2.Institute of MathematicsPolish Academy of ScienceWarszawaPoland
  3. 3.Institute of Applied Mathematics and MechanicsUniversity of WarsawWarszawaPoland
  4. 4.Institute of Applied MathematicsLeibniz University HannoverHannoverGermany

Personalised recommendations