Skip to main content
Log in

Generalized Transition Fronts for One-Dimensional Almost Periodic Fisher-KPP Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper investigates the existence of generalized transition fronts for Fisher-KPP equations in one-dimensional, almost periodic media. Assuming that the linearized elliptic operator near the unstable steady state admits an almost periodic eigenfunction, we show that such fronts exist if and only if their average speed is above an explicit threshold. This hypothesis is satisfied in particular when the reaction term does not depend on x or (in some cases) is small enough. Moreover, except for the threshold case, the fronts we construct and their speeds are almost periodic, in a sense. When our hypothesis is no longer satisfied, such generalized transition fronts still exist for an interval of average speeds, with explicit bounds. Our proof relies on the construction of sub and super solutions based on an accurate analysis of the properties of the generalized principal eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds. Methods of functional analysis and theory of elliptic equations (Naples, 1982) Liguori, Naples, 19–52, 1983

  2. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusions arising in population genetics. Adv. Math. 30, 33–76 (1978)

  3. Berestycki H., Hamel F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berestycki, H., Hamel, F.: Generalized traveling waves for reaction-diffusion equations. Perspectives in Nonlinear Partial Differential Equations. In honor of H. Brezis, Contemp. Math. Vol. 446. Amer. Math. Soc., 101–123, 2007

  5. Berestycki, H., Hamel, F.: Generalized transition waves and their properties. Commun. Pure Appl. Math. 65(5), 592–648 (2012)

  6. Berestycki H., Hamel F., Roques L.: Analysis of the periodically fragmented environment model: II—biological invasions and pulsating traveling fronts. J. Math. Pures Appl. 84, 1101–1146 (2005)

    Article  MATH  Google Scholar 

  7. Berestycki H., Hamel F., Rossi L.: Liouville-type results for semilinear elliptic equations in unbounded domains. Ann. Mat. Pura Appl. 186(4), 469–507 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berestycki, H., Nadin, G.: Spreading speeds for one-dimensional monostable reaction-diffusion equations. J. Math. Phys. 53(11) (2012)

  9. Berestycki, H., Nirenberg, L., Varadhan, S.R.S.: The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Commun. Pure Appl. Math. 47(1), 47–92 (1994)

  10. Berestycki H., Rossi L.: Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domain. Commun. Pure Appl. Math. 68(6), 1014–1065 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Besicovitch, A.S.: Almost periodic functions. Dover Publications, Inc., New York, 1955

  12. Bony J.-M.: Principe du maximum dans les espaces de Sobolev. C. R. Acad. Sci. Paris Sér. A-B 265, A333–A336 (1967)

    MathSciNet  MATH  Google Scholar 

  13. Bochner S.: Beitrage zur theorie der fastperiodischen funktionen. Math. Ann. 96, 119–147 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bochner S.: A new approach to almost periodicity. Proc. Nat. Acad. Sci. 48, 2039–2043 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Devyver, B., Fraas, M., Pinchover, Y.: Optimal Hardy weight for second-order elliptic operator: an answer to a problem of Agmon. J. Funct. Anal. 266(7), 4422–4489 (2014)

  16. Fink, A.M.: Almost periodic differential equations, Lecture Notes in Mathematics, Vol. 377. Springer-Verlag, Berlin, 1974

  17. Fisher R.A.: The advance of advantageous genes. Ann. Eugenics 7, 335–369 (1937)

    MATH  Google Scholar 

  18. Hamel F., Rossi L.: Transition fronts for the Fisher-KPP equation. Trans. Am. Math. Soc. 368, 8675–8713 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bulletin Université d’Etat à Moscou (Bjul. Moskowskogo Gos. Univ.), 1–26, 1937

  20. Kozlov S.M.: Ground states of quasiperiodic operators. Dokl. Akad. Nauk SSSR 271(3), 532–536 (1983)

    MathSciNet  MATH  Google Scholar 

  21. Lieberman, G.M.: Second order parabolic differential equations. World Scientific Publishing Co. Inc., River Edge, NJ, (1996)

  22. Lions, P.-L., Souganidis, P.E.: Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(5), 667–677 (2005)

  23. Lou B., Chen X.: Traveling waves of a curvature flow in almost periodic media.J. Differ. Equ. 247(8), 2189–2208 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Mellet A., Nolen J., Roquejoffre J.-M., Ryzhik L.: Stability of generalized transitions fronts. Commun. Partial Differ. Equ. 34, 521–552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mellet, A., Roquejoffre, J.-M., Sire, Y.: Generalized fronts for one-dimensionnal reaction-diffusion equations. Discrete Contin. Dyn. Syst. 26(1), 303–312 (2009)

  26. Murata, M.: Structure of positive solutions to (−Δ + V)u = 0 in R n. Duke Math. J. 53(4), 869–943 (1986)

  27. Nadin G.: Traveling fronts in space-time periodic media. J. Math. Pures Appl. 92, 232–262 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Nadin, G.: Critical travelling waves for general heterogeneous reaction-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014, in press)

  29. Nadin, G., Rossi, L.: Propagation phenomena for time heterogeneous KPP reaction-diffusion equations. J. Math. Pures Appl. (9) 98(6), 633–653 (2012)

  30. Nadin G., Rossi L.: Transition waves for Fisher–KPP equations with general time-heterogeneous and space-periodic coefficients. Anal. PDE 8(6), 1351–1377 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nolen J.: A central limit theorem for pulled fronts in a random medium. Net. Heter. Media 6(2), 167–194 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nolen, J., Roquejoffre, J.-M., Ryzhik, L., Zlatoš, A.: Existence and non-existence of Fisher-KPP transition fronts. Arch. Ration. Mech. Anal. 203(1), 217–246 (2012)

  33. Nolen J., Rudd M., Xin J.: Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dyn. PDE 2(1), 1–24 (2005)

    MATH  Google Scholar 

  34. Nolen J., Ryzhik L.: Traveling waves in a one-dimensional heterogeneous medium. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(3), 1021–1047 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Nussbaum, R.D., Pinchover, Y.: On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications. J. Anal. Math. 59, 161–177 (1992, Festschrift on the occasion of the 70th birthday of Shmuel Agmon)

  36. Pinchover Y.: On positive solutions of second-order elliptic equations, stability results, and classification. Duke Math. J. 57(3), 955–980 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pinchover Y.: A Liouville-type theorem for Schrödinger operators. Commun. Math. Phys. 272(1), 75–84 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Pinsky, R.G.: Positive harmonic functions and diffusion, Cambridge Studies in Advanced Mathematics, Vol. 45. Cambridge University Press, Cambridge, 1995

  39. Protter M.H., Weinberger H.F.: On the spectrum of general second order operators. Bull. Am. Math. Soc. 72, 251–255 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rossi L.: Liouville type results for periodic and almost periodic linear operators. Ann. Institut H. Poincaré, Analyse Non Linéaire 26, 2481–2502 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Rossi L., Ryzhik L.: Transition waves for a class of space-time dependent monostable equations. Commun. Math. Sci. 12, 879–900 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shen W.: Traveling waves in time almost periodic structures governed by bistable nonlinearities, I. Stability and uniqueness. J. Diff. Equ. 159(1), 1–54 (1999)

    Article  MATH  Google Scholar 

  43. Shen W.: waves in time almost periodic structures governed by bistable nonlinearities. II. Existence. J. Diff. Equ. 159(1), 55–101 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Shen W.: Traveling waves in time dependent bistable equations. Differ. Integral Equ. 19(3), 241–278 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Shen W.: Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations. J. Dyn. Differ. Equ. 23(1), 1–44 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shen W.: Existence of generalized traveling waves in time recurrent and space periodic monostable equations. J. Appl. Anal. Comput. 1(1), 69–93 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Shen W.: Existence of generalized traveling waves in time recurrent and space periodic monostable equations. J. Appl. Math. Comput. 1, 69–94 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Sorets, E., Spencer, T.: Positive Lyapunov exponents for schrodinger operators with quasi-periodic potentials Commun. Math. Phys. 142, 543–566 (1991)

  49. Xin J.: Existence of planar flame fronts in convective-diffusive periodic media. Arch. Ration. Mech. Anal. 121, 205–233 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zlatoš A.: Transition fronts in inhomogeneous Fisher-KPP reaction-diffusion equations. J. Math. Pures Appl. 98, 89–102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zlatoš A.: Generalized traveling waves in disordered media: existence, uniqueness, and stability. Arch. Ration. Mech. Anal. 208(2), 447–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zlatoš, A.: Propagation of reaction in inhomogeneous media. Commun. Pur. Appl. Math. (2016). doi:10.1002/cpa.21653

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégoire Nadin.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadin, G., Rossi, L. Generalized Transition Fronts for One-Dimensional Almost Periodic Fisher-KPP Equations. Arch Rational Mech Anal 223, 1239–1267 (2017). https://doi.org/10.1007/s00205-016-1056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1056-1

Navigation