Archive for Rational Mechanics and Analysis

, Volume 223, Issue 2, pp 1019–1033 | Cite as

The Essential Spectrum of the Neumann–Poincaré Operator on a Domain with Corners

  • Karl-Mikael PerfektEmail author
  • Mihai Putinar


Exploiting the homogeneous structure of a wedge in the complex plane, we compute the spectrum of the anti-linear Ahlfors–Beurling transform acting on the associated Bergman space. Consequently, the similarity equivalence between the Ahlfors–Beurling transform and the Neumann–Poincaré operator provides the spectrum of the latter integral operator on a wedge. A localization technique and conformal mapping lead to the first complete description of the essential spectrum of the Neumann–Poincaré operator on a planar domain with corners, with respect to the energy norm of the associated harmonic field.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrahamse, M.B., Kriete, T.L.: The spectral multiplicity of a multiplication operator. Indiana Univ. Math. J. 22, 845–857 (1972/73)Google Scholar
  2. 2.
    Ahlfors L.V.: Remarks on the Neumann–Poincaré integral equation. Pacific J. Math. 2, 271–280 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ammari H., Ciraolo G., Kang H., Lee H., Milton G.W.: Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. Arch. Ration. Mech. Anal. 208(2), 667–692 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ammari H., Ciraolo G., Kang H., Lee H., Yun K.: Spectral analysis of the Neumann–Poincaré operator and characterization of the stress concentration in anti-plane elasticity. Arch. Ration. Mech. Anal. 208(1), 275–304 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ammari H., Deng Y., Kang H., Lee H.: Reconstruction of inhomogeneous conductivities via the concept of generalized polarization tensors. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(5), 877–897 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ammari, H., Kang, H.: Reconstruction of small inhomogeneities from boundary measurements, Lecture Notes in Mathematics, Vol. 1846. Springer, Berlin, 2004Google Scholar
  7. 7.
    Bergman S., Schiffer M.: Kernel functions and conformal mapping. Compositio Math. 8, 205–249 (1951)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Carleman, T.: Über das Neumann–Poincarésche problem für ein gebiet mit ecken. Almquist & Wiksells, Uppsala, 1916Google Scholar
  9. 9.
    Dunford, N., Schwartz, J.T.: Linear operators. Part III: Spectral operators. Interscience Publishers [John Wiley & Sons, Inc.], New York, 1971. (With the assistance of William G. Bade and Robert G. Bartle, Pure and Applied Mathematics, Vol. VII)Google Scholar
  10. 10.
    Garcia, S.R., Prodan, E., Putinar, M.: Mathematical and physical aspects of complex symmetric operators. J. Phys. A 47(35), 353001, 54 (2014)Google Scholar
  11. 11.
    Helsing, J., Kang, H., Lim, M.: Classification of spectra of the Neumann–Poincaré operator on planar domains with corners by resonance. Ann. Inst. H. Poincaré Anal. Non Linéaire (2016). doi: 10.1016/j.anihpc.2016.07.004
  12. 12.
    Kang, H., Lim, M., Yu, S.: Spectral resolution of the Neumann–Poincaré operator on intersecting disks and analysis of plasmon resonance. arXiv:1501.02952 [math.AP] (2015)
  13. 13.
    Kress, R.: Linear integral equations, Applied Mathematical Sciences, Vol. 82, 3rd edn. Springer, New York, 2014Google Scholar
  14. 14.
    Krushkal, S.: Fredholm eigenvalues of Jordan curves: geometric, variational and computational aspects, Analysis and mathematical physics, Trends Math., pp. 349–368. Birkhäuser, Basel, 2009Google Scholar
  15. 15.
    Maue A.-W.: Zur Formulierung eines allgemeinen Beugungsproblems durch eine Integralgleichung. Z. Physik 126, 601–618 (1949)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mitrea I.: On the spectra of elastostatic and hydrostatic layer potentials on curvilinear polygons. J. Fourier Anal. Appl. 8(5), 443–487 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Miyanishi, Y., Suzuki, T.: Eigenvalues and eigenfunctions of double layer potentials. Trans. Am. Math. Soc. (to appear)Google Scholar
  18. 18.
    Nelson, E.: Topics in dynamics. I: Flows, Mathematical Notes. Princeton University Press, Princeton; University of Tokyo Press, Tokyo, 1969Google Scholar
  19. 19.
    Perfekt K.-M., Putinar M.: Spectral bounds for the Neumann–Poincaré operator on planar domains with corners. J. Anal. Math. 124, 39–57 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Putinar, M., Shapiro, H.S.: The Friedrichs operator of a planar domain, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., Vol. 113, pp. 303–330. Birkhäuser, Basel, 2000Google Scholar
  21. 21.
    Radon, J.: Gesammelte Abhandlungen. Band 1. Verlag der Österreichischen Akademie der Wissenschaften, Vienna; Birkhäuser Verlag, Basel, 1987. (With a foreword by Otto Hittmair, Edited and with a preface by Peter Manfred Gruber, Edmund Hlawka, Wilfried Nöbauer and Leopold Schmetterer)Google Scholar
  22. 22.
    Tucsnak, M., Weiss, G.: Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser, Basel, 2009Google Scholar
  23. 23.
    Wendland, W.L.: On the double layer potential, Analysis, partial differential equations and applications, Oper. Theory Adv. Appl., Vol. 193., pp. 319–334. Birkhäuser, Basel, 2009Google Scholar
  24. 24.
    Werner S.: Spiegelungskoeffizient und Fredholmscher Eigenwert für gewisse Polygone. Ann. Acad. Sci. Fenn. Math. 22(1), 165–186 (1997)MathSciNetGoogle Scholar
  25. 25.
    Zaremba S.: Les fonctions fondamentales de M. Poincaré et la méthode de Neumann pour une frontière composée de polygones curvilignes. Journal de Mathématiques Pures et Appliquées 10, 395–444 (1904)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsThe University of TennesseeKnoxvilleUSA
  2. 2.Mathematics DepartmentUniversity of CaliforniaSanta BarbaraUSA
  3. 3.School of Mathematics and StatisticsNewcastle University Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations