Interfaces, Modulated Phases and Textures in Lattice Systems

Abstract

We introduce a class of n-dimensional (possibly inhomogeneous) spin-like lattice systems presenting modulated phases with possibly different textures. Such systems can be parameterized according to the number of ground states, and can be described by a phase-transition energy which we compute by means of variational techniques. Degeneracies due to frustration are also discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Alicandro R., Braides A., Cicalese M.: Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Netw. Heterog. Media 1(1), 85–107 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Alicandro, R., Braides, A., Cicalese, M.: Book, 2016 (in preparation)

  3. 3.

    Alicandro R., Cicalese M., Ruf M.: Domain formation in magnetic polymer composites: an approach via stochastic homogenization. Arch. Rat. Mech. Anal. 218(2), 945–984 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Alicandro R., Gelli M.S.: Local and non local continuum limits of Ising type energies for spin systems. SIAM J. Math. Anal. 48(2), 895–931 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Ambrosio L., Braides A.: Functionals defined on partitions in sets of finite perimeter, I: Integral representation and gamma-convergence. J. Math. Pure Appl. 69, 285–306 (1990)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Ambrosio L., Braides A.: Functionals defined on partitions of sets of finite perimeter, I: semicontinuity, relaxation and homogenization. J. Math. Pures Appl. 69, 307–333 (1990)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Bellettini G., Braides A., Riey G.: Variational approximation of anisotropic functionals on partitions. Ann. di Mat. Pura ed Appl. 184(1), 75–93 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Braides, A.: \({\Gamma}\)-convergence for beginners, volume 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2002

  9. 9.

    Braides, A.: Discrete-to-continuum variational methods for lattice systems. In: Proceedings International Congress of Mathematicians. Seoul, pp. 997–1015, 2014

  10. 10.

    Braides A.: An example of non-existence of plane-like minimizers for an almost-periodic Ising system. J. Stat. Phys. 157(2), 295–302 (2014)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Braides, A., Chiadò Piat V.: Integral representation results for functionals defined on \({SBV (\Omega; R^m)}\). J. de Math. Pures et Appl. 75(6), 595–626 (1996)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Braides A., ChiadoPiat V., Solci M.: Discrete double-porosity models for spin systems. Math. Mech. Complex Syst. 4, 79–102 (2016)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Braides A., Defranceschi A.: Homogenization of multiple integrals. Oxford University Press, Oxford (1998)

    Google Scholar 

  14. 14.

    Braides A., Garroni A., Palombaro M.P.: Interfacial energies of systems of chiral molecules. SIAM Multiscale Model Simul. 14, 1037–1062 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Braides A., Piatnitski A.: Variational problems with percolation: dilute spin systems at zero temperature. J. Stat. Phys. 149(5), 846–864 (2012)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Braides A., Piatnitski A.: Homogenization of surface and length energies for spin systems. J. Funct. Anal. 264(6), 1296–1328 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Caffarelli L.A., de la Llave R.: Planelike minimizers in periodic media. Commun. Pure Appl. Math. 54(12), 1403–1441 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Ciach, A., Hoye, J.S., Stell, G.: Microscopic model for microemulsions. J. Phys. A Math. General. 21(15), L777 (1988)

  19. 19.

    Coleman B.D., Marcus M., Mizel V.J.: On the thermodynamics of periodic phases. Arch. Ration. Mech. Anal. 117(4), 321–347 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    De Giorgi E., Letta G.: Une notion générale de convergence faible pour des fonctions croissantes d’ensemble. Ann. della Scuola Normale Superiore di Pisa-Classe di Sci. 4(1), 61–99 (1977)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Giuliani A., Lebowitz J.L., Lieb E.H.: Ising models with long-range antiferromagnetic and short-range ferromagnetic interactions. Phys. Rev. B 74(6), 064420 (2006)

    ADS  Article  Google Scholar 

  22. 22.

    Giuliani A., Lebowitz J.L., Lieb E.H.: Checkerboards, stripes, and corner energies in spin models with competing interactions. Phys. Rev. B 84(6), 064205 (2011)

    ADS  Article  Google Scholar 

  23. 23.

    Giuliani A., Lieb E.H., Seiringer R.: Realization of stripes and slabs in two and three dimensions. Phys. Rev. B 88(6), 064401 (2013)

    ADS  Article  Google Scholar 

  24. 24.

    Ohta T., Kawasaki K.: Equilibrium morphology of block copolymer melts. Macromolecules 19(10), 2621–2632 (1986)

    ADS  Article  Google Scholar 

  25. 25.

    Seul M., Andelman D.: Domain shapes and patterns: the phenomenology of modulated phases. Science 267(5197), 476–483 (1995)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Braides.

Additional information

Communicated by The Editors

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Braides, A., Cicalese, M. Interfaces, Modulated Phases and Textures in Lattice Systems. Arch Rational Mech Anal 223, 977–1017 (2017). https://doi.org/10.1007/s00205-016-1050-7

Download citation