Phase Field Models for Thin Elastic Structures with Topological Constraint

Abstract

This article is concerned with the problem of minimising the Willmore energy in the class of connected surfaces with prescribed area which are confined to a small container. We propose a phase field approximation based on De Giorgi’s diffuse Willmore functional to this variational problem. Our main contribution is a penalisation term which ensures connectedness in the sharp interface limit. The penalisation of disconnectedness is based on a geodesic distance chosen to be small between two points that lie on the same connected component of the transition layer of the phase field. We prove that in two dimensions, sequences of phase fields with uniformly bounded diffuse Willmore energy and diffuse area converge uniformly to the zeros of a double-well potential away from the support of a limiting measure. In three dimensions, we show that they converge \({\mathcal{H}^1}\)-almost everywhere on curves. This enables us to show \({\Gamma}\)-convergence to a sharp interface problem that only allows for connected structures. The results also imply Hausdorff convergence of the level sets in two dimensions and a similar result in three dimensions. Furthermore, we present numerical evidence of the effectiveness of our model. The implementation relies on a coupling of Dijkstra’s algorithm in order to compute the topological penalty to a finite element approach for the Willmore term.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Allard W.K.: On the first variation of a varifold. Ann. Math. 95(2), 417–491 (1972)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Benmansour F., Carlier G., Peyre G., Santambrogio F.: Derivatives with respect to metrics and applications: subgradient marching algorithm. Numerische Mathematik 116(3), 357–381 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Bellettini G.: Variational approximation of functionals with curvatures and related properties. J. Convex Anal. 4(1), 91–108 (1997)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Barrett J.W., Garcke H., Nürnberg R.: On the parametric finite element approximation of evolving hypersurfaces in \({\mathbb{R}^3}\). J. Comput. Phys. 227(9), 4281–4307 (2008)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Bauer M., Kuwert E.: Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not. 2003(10), 553–576 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Biben T., Kassner K., Misbah C.: Phase-field approach to three-dimensional vesicle dynamics. Phys. Rev. E 72(4), 041921 (2005)

    ADS  Article  Google Scholar 

  7. 7.

    Bonnivard M., Lemenant A., Santambrogio F.: Approximation of length minimization problems among compact connected sets. SIAM J. Math. Anal. 47(2), 1489–1529 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Bellettini G., Mugnai L.: Approximation of the Helfrich’s functional via diffuse interfaces. SIAM J. Math. Anal. 42(6), 2402–2433 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Bretin, E., Masnou, S., Oudet, E.: Phase-field approximations of the Willmore functional and flow. Numerische Mathematik, 1–57 (2013)

  10. 10.

    Bellettini, G., Paolini, M.: Approssimazione variazionale di funzionali con curvatura. Seminario di Analisi Matematica, Dipartimento di Matematica dell’Università di Bologna., (1993)

  11. 11.

    Balzani N., Rumpf M.: A nested variational time discretization for parametric Willmore flow. Interfaces Free Bound. 14(4), 431–454 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Blaschke, W., Thomsen, G.: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. Band I. Elementare Differentialgeometrie, vol. 29 of VorlesunGrundlehren der mathematischen Wissenschaften, 3rd edn. Springer, New York, 1929

  13. 13.

    Canham P.B.: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26(1), 61–81 (1970)

    Article  Google Scholar 

  14. 14.

    Caffarelli L.A., Cordoba A.: Uniform convergence of a singular perturbation problem. Commun. Pure Appl. Math. 48(1), 1–12 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Caffarelli L.A., Cordoba A.: Phase transitions: Uniform regularity of the intermediate layers. J. Reine Angew. Math. 593(593), 209–235 (2006)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Campelo F., Hernández-Machado A.: Dynamic model and stationary shapes of fluid vesicles. Eur. Phys. J. E, 20(1), 37–45 (2006)

    Article  Google Scholar 

  17. 17.

    Choksi R., Veneroni M.: Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case. Calc. Var. Partial Differ. Equations 48(3-4), 337–366 (2013)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Dziuk G., Elliott C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Delladio, S.: Special generalized gauss graphs and their application to minimization of functionals involving curvatures. J. fur die Reine und Angewandte Math., 17–44 (1997)

  20. 20.

    De Giorgi, E.: Some remarks on \({\Gamma}\)-convergence and least squares method. In: Composite media and homogenization theory (Trieste, 1990), pp. 135–142. Birkhäuser Boston, Boston, MA, 1991

  21. 21.

    Deckelnick, K., Grunau, H.-C., Röger, M.: Minimising a relaxed Willmore functional for graphs subject to boundary conditions. arXiv:1503.01275, 2015

  22. 22.

    Du Q., Liu C., Ryham R., Wang X.: A phase field formulation of the Willmore problem. Nonlinearity 18(3), 1249–1267 (2005)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Du Q., Liu C., Ryham R., Wang X.: Diffuse interface energies capturing the Euler number: relaxation and renormalization. Commun. Math. Sci. 5(1), 233–242 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Du Q., Liu C., Ryham R., Wang X.: Energetic variational approaches in modeling vesicle and fluid interactions. Phys. D 238(9-10), 923–930 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Du Q., Liu C., Wang X.: Retrieving topological information for phase field models. SIAM J. Appl. Math. 65(6), 1913–1932 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Du Q., Liu C., Wang X.: Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys. 212(2), 757–777 (2006)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Dondl P.W., Mugnai L., Rögerm M.: Confined elastic curves. SIAM J. Appl. Math. 71(6), 2205–2226 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Dondl P.W., Mugnai L., Rögerm M.: A phase field model for the optimization of the Willmore energy in the class of connected surfaces. SIAM J. Math. Anal. 46(2), 1610–1632 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    del Pino M., Kowalczyk M., Pacard F., Wei J.: Multiple-end solutions to the Allen–Cahn equation in \({\mathbb{R}^2}\). J. Funct. Anal. 258(2), 458–503 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Droske M., Rumpf M.: A level set formulation for Willmore flow. Interfaces Free Bound. 6(3), 361–378 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Du Q.: Phase field calculus, curvature-dependent energies, and vesicle membranes. Phil. Mag. 91(1), 165–181 (2010)

    ADS  Article  Google Scholar 

  32. 32.

    Du Q., Wang X.: Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations. Int. J. Numer. Anal. Model. 4(3-4), 441–459 (2007)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Dondl, P.W., Wojtowytsch, S.: Numerical treatment of a phase field model for elastic membranes with topological constraint, 2016 (in preparation)

  34. 34.

    Dziuk G.: Computational parametric Willmore flow. Numerische Math. 111(1), 55–80 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992

  36. 36.

    Esedoglu S., Rätz A., Röger M.: Colliding interfaces in old and new diffuse-interface approximations of Willmore-flow. Commun. Math. Sci. 12(1), 125–147 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band, vol. 153. Springer, New York, 1969

  38. 38.

    Friesecke G., James R.D., Müller S.: Rigorous derivation of nonlinear plate theory and geometric rigidity. Comptes Rendus Mathematique 334(2), 173–178 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Friesecke G., James R.D., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Friesecke G., James R.D., Mora M.G., Müller S.: Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by gamma-convergence. Comptes Rendus Math 336(8), 697–702 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Franken M., Rumpf M., Wirth B.: A phase field based PDE constrained optimization approach to time dicrete Willmore flow. Int. J. Numer. Anal. Model. 10(1), 116–138 (2013)

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Grosse-Brauckmann K.: New surfaces of constant mean curvature. Math. Zeitschrift 214(1), 527–565 (1993)

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Germain, S.: Recherches sur la theorie des surfaces elastiques.-Paris, V. Courcier. V. Courcier, 1821

  44. 44.

    Gilbarg D.: Trudinger N.S.: Elliptic partial differential equations of second order. Springer, New York (2001)

    Google Scholar 

  45. 45.

    Helfrich W.: Elastic properties of lipid bilayers—theory and possible experiments. Zeitschrift für Naturforschung C 28(11), 693–703 (1973)

    Google Scholar 

  46. 46.

    Hutchinson J.E., Tonegawa Y.: Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var. Partial Differ. Equations 10(1), 49–84 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Hutchinson J.E.: Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J. 35(1), 45–71 (1986)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Kuwert E., Li Y., Schätzle R.: The large genus limit of the infimum of the Willmore energy. Am. J. Math. 132(1), 37–51 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Keller L.G.A., Mondino A., Rivière T.: Embedded surfaces of arbitrary genus minimizing the Willmore energy under isoperimetric constraint. Arch. Ration. Mech. Anal. 212(2), 645–682 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    Krantz S.G., Parks H.R.: Geometric integration theory. Springer Science & Business Media, New York (2008)

    MATH  Book  Google Scholar 

  51. 51.

    Kuwert E., Schätzle R.: The Willmore flow with small initial energy. J. Differ. Geom. 57(3), 409–441 (2001)

    MathSciNet  MATH  Google Scholar 

  52. 52.

    Kuwert E., Schätzle R.: Gradient flow for the Willmore functional. Commun. Anal. Geometry 10(2), 307–339 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  53. 53.

    Kuwert, E., Schätzle, R.: The Willmore functional. In: Topics in modern regularity theory, pp. 1–115. Springer, New York, 2012

  54. 54.

    Link, F.: Gradient flow for the Willmore functional in Riemannian manifolds of bounded geometry, 2013. arXiv:1308.6055

  55. 55.

    Lamm, T., Metzger, J.: Small surfaces of Willmore type in Riemannian manifolds. Int. Math. Res. Not. IMRN (19), 3786–3813 (2010)

  56. 56.

    Lamm T., Metzger J., Schulze F.: Foliations of asymptotically flat manifolds by surfaces of Willmore type. Math. Ann. 350(1), 1–78 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  57. 57.

    Lussardi L., Peletier M.A., Röger M.: Variational analysis of a mesoscale model for bilayer membranes. J. Fixed Point Theory Appl. 15(1), 217–240 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  58. 58.

    Li P., Yau S.-T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(2), 269–291 (1982)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  59. 59.

    Marques F., Neves A.: Min-max theory and the Willmore conjecture. Ann. Math. 179(2), 683–782 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    Modica L.: A gradient bound and a Liouville theorem for nonlinear Poisson equations. Commun. Pure Appl. Math. 38(5), 679–684 (1985)

    MathSciNet  MATH  Article  Google Scholar 

  61. 61.

    Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98(2), 123–142 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  62. 62.

    Mondino A., Rivière T.: Willmore spheres in compact Riemannian manifolds. Adv. Math. 232, 608–676 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  63. 63.

    Müller S., Röger M.: Confined structures of least bending energy. J. Differ. Geometry 97(1), 109–139 (2014)

    MathSciNet  MATH  Google Scholar 

  64. 64.

    Mayer U.F., Simonett G.: A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the willmore flow. Interfaces Free Boundaries 4(1), 89–109 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  65. 65.

    Mayer, U.F., Simonett, G.: Self-intersections for Willmore flow. In: Evolution equations: applications to physics, industry, life sciences and economics, pp. 341–348. Springer, New York, 2003

  66. 66.

    Nagase Y., Tonegawa Y.: A singular perturbation problem with integral curvature bound. Hiroshima Math. J. 37(3), 455–489 (2007)

    MathSciNet  MATH  Google Scholar 

  67. 67.

    Peletier M.A., Röger M.: Partial localization, lipid bilayers, and the elastica functional. Arch. Ration. Mech. Anal. 193(3), 475–537 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  68. 68.

    Pinkall U., Sterling I.: Willmore surfaces. Math. Intell. 9(2), 38–43 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  69. 69.

    Riviere T.: Variational principles for immersed surfaces with L 2-bounded second fundamental form. J. für die reine und angewandte Mathematik (Crelles Journal) 2014(695), 41–98 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  70. 70.

    Röger M., Schätzle R.: On a modified conjecture of De Giorgi. Math. Z. 254(4), 675–714 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  71. 71.

    Schygulla J.: Willmore minimizers with prescribed isoperimetric ratio. Arch. Ration. Mech. Anal. 203(3), 901–941 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  72. 72.

    Simon, L.: Lectures on geometric measure theory. Australian National University Centre for Mathematical Analysis, vol. 3. Canberra, 1983

  73. 73.

    Simon L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1(2), 281–326 (1993)

    MathSciNet  MATH  Article  Google Scholar 

  74. 74.

    Simonett G.: The Willmore flow near spheres. Differ. Integral Equations 14(8), 1005–1014 (2001)

    MathSciNet  MATH  Google Scholar 

  75. 75.

    Thomsen G.: über konforme Geometrie I: Grundlagen der konformen Flächentheorie. Abh. Math. Sem. Hamburg 3, 31–56 (1923)

    MathSciNet  MATH  Article  Google Scholar 

  76. 76.

    Topping P.: Mean curvature flow and geometric inequalities. J. Reine Angew. Math. 503, 47–61 (1998)

    MathSciNet  MATH  Google Scholar 

  77. 77.

    Wang X., Du Q.: Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56(3), 347–371 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  78. 78.

    Willmore T.J.: Note on embedded surfaces. An. Sti. Univ.“Al. I. Cuza” Iasi Sect. I a Mat.(NS) B 11, 493–496 (1965)

    MathSciNet  MATH  Google Scholar 

  79. 79.

    Willmore T.J.: Mean curvature of Riemannian immersions. J. Lond. Math. Soc. 2(2), 307–310 (1971)

    MathSciNet  MATH  Article  Google Scholar 

  80. 80.

    Willmore, T.J.: A survey on Willmore immersions. Geom. Topol. Submanifolds IV (Leuven 1991), 11–16 (1992)

  81. 81.

    Willmore T.J.: Riemannian geometry. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  82. 82.

    Willmore T.J.: Surfaces in conformal geometry. Ann. Global Anal. Geom. 18(3-4), 255–264 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  83. 83.

    Wojtowytsch, S.: Helfrich’s energy and constrained minimisation, 2016. arXiv:1608.02823 [math.DG]

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrick W. Dondl.

Additional information

Communicated by G. Friesecke

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dondl, P.W., Lemenant, A. & Wojtowytsch, S. Phase Field Models for Thin Elastic Structures with Topological Constraint. Arch Rational Mech Anal 223, 693–736 (2017). https://doi.org/10.1007/s00205-016-1043-6

Download citation