Archive for Rational Mechanics and Analysis

, Volume 222, Issue 3, pp 1367–1443 | Cite as

The Boltzmann Equation for a Multi-species Mixture Close to Global Equilibrium

  • Marc Briant
  • Esther S. Daus


We study the Cauchy theory for a multi-species mixture, where the different species can have different masses, in a perturbative setting on the three dimensional torus. The ultimate aim of this work is to obtain the existence, uniqueness and exponential trend to equilibrium of solutions to the multi-species Boltzmann equation in \({L^1_vL^\infty_x(m)}\), where \({m\sim (1+ |v|^k)}\) is a polynomial weight. We prove the existence of a spectral gap for the linear multi-species Boltzmann operator allowing different masses, and then we establish a semigroup property thanks to a new explicit coercive estimate for the Boltzmann operator. Then we develop an \({L^2-L^\infty}\) theory à la Guo for the linear perturbed equation. Finally, we combine the latter results with a decomposition of the multi-species Boltzmann equation in order to deal with the full equation. We emphasize that dealing with different masses induces a loss of symmetry in the Boltzmann operator which prevents the direct adaptation of standard mono-species methods (for example Carleman representation, Povzner inequality). Of important note is the fact that all methods used and developed in this work are constructive. Moreover, they do not require any Sobolev regularity and the \({L^1_vL^\infty_x}\) framework is dealt with for any \({k > k_0}\), recovering the optimal physical threshold of finite energy \({k_0=2}\) in the particular case of a multi-species hard spheres mixture with the same masses.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baranger C., Mouhot C.: Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Rev. Mat. Iberoamericana 21(3), 819–841 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bobylev A.: Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems. J. Stat. Phys. 88(5–6), 1183–1214 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bobylev A., Gamba I., Panferov V.: Moment inequalities and high-energy tails for boltzmann equations with inelastic interactions. J. Stat. Phys. 116(5–6), 1651–1682 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bobylëv A.V.: The method of the Fourier transform in the theory of the Boltzmann equation for Maxwell molecules. Dokl. Akad. Nauk SSSR 225(6), 1041–1044 (1975)ADSMathSciNetGoogle Scholar
  5. 5.
    Bobylëv, A.V.: The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules. In: Mathematical Physics Reviews, Vol. 7, vol. 7 of Soviet Sci. Rev. Sect. C Math. Phys. Rev. Harwood Academic Publishers, Chur, pp. 111–233, 1988Google Scholar
  6. 6.
    Boudin L., Grec B., Pavi M., Salvarani F.: Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinet. Relat. Models 6(1), 137–157 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boudin L., Grec B., Salvarani F.: The Maxwell–Stefan diffusion limit for a kinetic model of mixtures. Acta Appl. Math. 136(1), 79–90 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Briant, M.: Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Preprint (2015)Google Scholar
  9. 9.
    Briant M.: From the Boltzmann equation to the incompressible Navier– Stokes equations on the torus: a quantitative error estimate. J. Differ. Equ. 259(11), 6072–6141 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Carleman, T.: Problèmes mathématiques dans la théorie cinétique des gaz. Publ. Sci. Inst. Mittag-Leffler, vol. 2. Almqvist & Wiksells Boktryckeri Ab, Uppsala, 1957Google Scholar
  11. 11.
    Cercignani C.: The Boltzmann Equation and Its Applications, vol. 67 of Applied Mathematical Sciences. Springer-Verlag, New York (1988)CrossRefGoogle Scholar
  12. 12.
    Cercignani C., Illner R., Pulvirenti M.: The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences. Springer-Verlag, New York (1994)CrossRefzbMATHGoogle Scholar
  13. 13.
    Daus, E.S., Jüngel, A.Y., Mouhot, C., Zamponi, N.: Hypocoercivity for a linearized multi-species Boltzmann system. Preprint (2015)Google Scholar
  14. 14.
    Desvillettes L., Monaco R., Salvarani F.: A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B Fluids 24(2), 219–236 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Esposito R., Guo Y., Kim C., Marra R.: Non-isothermal boundary in the Boltzmann theory and Fourier law. Commun. Math. Phys. 323(1), 177–239 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Evans, L.C.: Partial Differential Equations. Graduate studies in mathematics. American Mathematical Society, Providence, 1998Google Scholar
  17. 17.
    Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: hard spheres and short-range potentials. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2013Google Scholar
  18. 18.
    Gamba I.M., Panferov V., Villani C.: Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation. Arch. Ration. Mech. Anal. 194(1), 253–282 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Grad, H.: Principles of the kinetic theory of gases. In: Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, pp. 205–294. Springer-Verlag, Berlin, 1958Google Scholar
  20. 20.
    Grad, H.: Asymptotic theory of the Boltzmann equation. II. In: Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’ UNESCO, Paris, 1962), Vol. I., pp. 26–59. Academic Press, New York, 1963Google Scholar
  21. 21.
    Grad, H.: Asymptotic equivalence of the Navier– Stokes and nonlinear Boltzmann equations. In: Proc. Sympos. Appl. Math., Vol. XVII, pp. 154–183. Amer. Math. Soc., Providence, RI, 1965Google Scholar
  22. 22.
    Gualdani, M.P., Mischler, S., Mouhot, C.: Factorization for non-symmetric operators and exponential H-theorem. Preprint (2013)Google Scholar
  23. 23.
    Guo Y.: The Vlasov– Poisson– Boltzmann system near Maxwellians. Commun. Pure Appl. Math. 55(9), 1104–1135 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Guo Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Ration. Mech. Anal. 169(4), 305–353 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Guo Y.: Boltzmann diffusive limit beyond the Navier–Stokes approximation. Commun. Pure Appl. Math. 59(5), 626–687 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Guo Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197(3), 713–809 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995 (Reprint of the 1980 edition)Google Scholar
  28. 28.
    Lanford, O.E., III: Time evolution of large classical systems. In: Dynamical Systems, Theory and Applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974). Lecture Notes in Phys., vol. 38, pp. 1–111. Springer, Berlin, 1975Google Scholar
  29. 29.
    Mischler S., Wennberg B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16(4), 467–501 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Mouhot C.: Explicit coercivity estimates for the linearized Boltzmann and Landau operators. Commun. Partial Differ. Equ. 31(7–9), 1321–1348 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mouhot C., Neumann L.: Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity 19(4), 969–998 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Povzner A.J.: On the Boltzmann equation in the kinetic theory of gases. Mat. Sb. (N.S.) 58(100), 65–86 (1962)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Pulvirenti M., Saffirio C., Simonella S.: On the validity of the Boltzmann equation for short range potentials. Rev. Math. Phys. 26(2), 1450001, 64 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Ukai S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc. Jpn. Acad. 50, 179–184 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ukai, S., Yang, T.: Mathematical Theory of the Boltzmann Equation. Lecture Notes Series, no. 8. Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, 2006Google Scholar
  36. 36.
    Vidav I.: Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl. 30, 264–279 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam, 2002Google Scholar
  38. 38.
    Yu H.: Global classical solutions of the Boltzmann equation near Maxwellians. Acta Math. Sci. Ser. B Engl. Ed. 26(3), 491–501 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7598, Laboratoire Jacques-Louis LionsParisFrance
  2. 2.Institute for Analysis and Scientific ComputingVienna University of TechnologyViennaAustria

Personalised recommendations