Skip to main content
Log in

Proof of a Conjecture for the One-Dimensional Perturbed Gelfand Problem from Combustion Theory

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study global bifurcation curves and the exact multiplicity of positive solutions for the two-point boundary value problem arising in combustion theory:

$$\left\{\begin{array}{l}u^{\prime \prime }(x)+\lambda \exp \left(\frac{au}{a+u}\right) =0,\quad -1<x<1, \\ u(-1)=u(1)=0, \end{array}\right.$$

where \({\lambda > 0}\) is the Frank–Kamenetskii parameter and a > 0 is the activation energy parameter. We prove that there exists a critical bifurcation value a 0 \({\approx 4.069}\) such that, on the \({(\lambda,||u||_{\infty })}\)-plane, the bifurcation curve is S-shaped for \({a > a_{0}}\) and is monotone increasing for \({0 < a \leqq a_{0}}\). That is, we prove the long-standing conjecture for the one-dimensional perturbed Gelfand problem. We also study, in the \({(a,\lambda, \left \Vert u\right\Vert _{\infty})}\)-space, the shape and structure of the bifurcation surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bebernes J., Eberly D.: Mathematical problems from combustioneory. Springer-Verlag, New York (1989)

    Book  MATH  Google Scholar 

  2. Boddington T., Gray P., Robinson C.: Thermal explosion and the disappearance of criticality at small activation energies: exact results for the slab. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 368, 441–461 (1979)

    Article  ADS  Google Scholar 

  3. Brown K.J., Ibrahim M.M.A., Shivaji R.: S-shaped bifurcation curves. Nonlinear Anal. 5, 475–486 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crandall M.G., Rabinowitz P.H.: Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Rational Mech. Anal. 52, 161–180 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Cohn P.M.: Basic algebra: groups, rings and fields. Springer-Verlag, London (2003)

    Book  MATH  Google Scholar 

  6. Du Y.: Exact multiplicity and S-shaped bifurcation curve for some semilinear elliptic problems from combustion theory. SIAM J. Math. Anal. 32, 707–733 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Du Y., Lou Y.: Proof of a conjecture for the perturbed Gelfand equation from combustion theory. J. Differ. Equ. 173, 213–230 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Forde J., Nelson P.: Applications of Sturm sequences to bifurcation analysis of delay differential equation models. J. Math. Anal. Appl. 300, 273–284 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gelfand I.M.: Some problems in the theory of quasilinear equations. Am. Math. Soc. Transl. (2) 29, 295–381 (1963)

    Article  MathSciNet  Google Scholar 

  10. Hastings S.P., McLeod J.B.: The number of solutions to an equation from catalysis. Proc. R. Soc. Edinb. Sect. A 101, 15–30 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hastings S.P., McLeod J.B.: Classical methods in ordinary differential equations: With applications to boundary value problems. Graduate Studies in Mathematics, vol. 129. American Mathematical Society, Providence, 2012

  12. Huang S.-Y., Wang S.-H.: On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete Contin. Dyn. Syst. 35, 4839–4858 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, S.-Y., Wang, S.-H.: Tasks in computations in some proofs (2015). http://mx.nthu.edu.tw/~sy-huang/Gelfand/works.htm

  14. Hung K.-C., Wang S.-H.: A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem. J. Differ. Equ. 251, 223–237 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Hung K.-C., Wang S.-H.: Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications. Trans. Am. Math. Soc. 365, 1933–1956 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jacobsen J., Schmitt K.: The Liouville-Bratu-Gelfand problem for radial operators. J. Differ. Equ. 184, 283–298 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kapila A.K., Matkowsky B.J.: Reactive-diffuse systems with Arrhenius kinetics: multiple solutions, ignition and extinction. SIAM J. Appl. Math. 36, 373–389 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Korman P., Li Y.: On the exactness of an S-shaped bifurcation curve. Proc. Am. Math. Soc. 127, 1011–1020 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Korman P., Li Y., Ouyang T.: Computing the location and direction of bifurcation. Math. Res. Lett. 12, 933–944 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Laetsch T.: The number of solutions of a nonlinear two point boundary value problem. Indiana Univ. Math. J. 20, 1–13 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liouville J.: Sur l’équation aux différences partielles \({\frac{d^{2} \log \lambda }{dudv} \pm \lambda 2a^{2}=0}\). J. Math. Pures Appl. 18, 71–72 (1853)

    Google Scholar 

  22. Mimura M., Sakamoto K.: Multi-dimensional transition layers for an exothermic reaction-diffusion system in long cylindrical domains. J. Math. Sci. Univ. Tokyo 3, 109–179 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Prestel A., Delzell C.N.: Positive polynomials: from Hilbert’s 17th problem to real algebra. Springer-Verlag, Berlin (2001)

    Book  MATH  Google Scholar 

  24. Shi J.: Persistence and bifurcation of degenerate solutions. J. Funct. Anal. 169, 494–531 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shi J.: Multi-parameter bifurcation and applications. Topological methods, variational methods and their applications (Taiyuan, 2002), pp. 211–221, World Sci. Publ., River Edge, 2003

  26. Shivaji R.: Remarks on an S-shaped bifurcation curve. J. Math. Anal. Appl. 111, 374–387 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Smoller J., Wasserman A.: Global bifurcation of steady-state solutions. J. Differ. Equ. 39, 269–290 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Wang S.-H.: On S-shaped bifurcation curves. Nonlinear Anal. TMA 22, 1475–1485 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zeldovich Ya.B., Barenblatt G.I., Librovich, V.B., Makhviladze G.M.: The mathematical theory of combustion and explosions. Consultants Bureau [Plenum], New York 1985

  30. Zhang M., Deng J.: Number of zeros of interval polynomials. J. Comput. Appl. Math. 237, 102–110 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Hwa Wang.

Additional information

Communicated by P. Rabinowitz

This work is partially supported by the National Science Council of the Republic of China under Grant No. NSC 101-2115-M-007-001-MY2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, SY., Wang, SH. Proof of a Conjecture for the One-Dimensional Perturbed Gelfand Problem from Combustion Theory. Arch Rational Mech Anal 222, 769–825 (2016). https://doi.org/10.1007/s00205-016-1011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1011-1

Navigation