Skip to main content
Log in

Global Weak Solutions for Kolmogorov–Vicsek Type Equations with Orientational Interactions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the global existence and uniqueness of weak solutions to kinetic Kolmogorov–Vicsek models that can be considered as non-local, non-linear, Fokker–Planck type equations describing the dynamics of individuals with orientational interactions. This model is derived from the discrete Couzin–Vicsek algorithm as mean-field limit (Bolley et al., Appl Math Lett, 25:339–343, 2012; Degond et al., Math Models Methods Appl Sci 18:1193–1215, 2008), which governs the interactions of stochastic agents moving with a velocity of constant magnitude, that is, the corresponding velocity space for these types of Kolmogorov–Vicsek models is the unit sphere. Our analysis for L p estimates and compactness properties take advantage of the orientational interaction property, meaning that the velocity space is a compact manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldana M., Huepe C.: Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach. J. Stat. Phys 112, 135–153 (2003)

    Article  MATH  Google Scholar 

  2. Bolley F., Cañizo J.A., Carrillo J.A.: Mean-field limit for the stochastic Vicsek model. Appl. Math. Lett, 25, 339–343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bostan M., Carrillo J.A.: Asymptotic fixed-speed reduced dynamics for kinetic equations in swarming. Math. Models Methods Appl. Sci. 23, 2353–2393 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Couzin I.D., Krause J., James R., Ruxton G.D., Franks N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  5. Cucker F., Smale S.: Emergent behavior in flocks. IEEE Trans. Autom. Control, 52, 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  6. Degond P.: Global existence of smooth solutions for the Vlasov–Fokker–Planck equation in 1 and 2 space dimensions. Ann. Sci. Ecole Norm. Sup. (4) 19, 519–542 (1986)

    MathSciNet  MATH  Google Scholar 

  7. Degond P., Dimarco G., Mac T.B.N.: Hydrodynamics of the Kuramoto–Vicsek model of rotating self-propelled particles. Math. Models Methods Appl. Sci. 24, 277–325 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Degond P., Frouvelle A., Liu J.-G.: Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics. Arch. Rat. Mech. Anal. 216, 63–115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Degond P., Frouvelle A., Liu J-G.: Macroscopic limits and phase transition in a system of self-propelled particles. J. Nonlinear Sci. 23, 427–456 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Degond P., Motsch S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18, 1193–1215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Degond P., Motsch S.: Macroscopic limit of self-driven particles with orientation interaction. C. R. Acad. Sci. Paris Ser I. 345, 555–560 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Degond P., Yang T.: Diffusion in a continuum model of self-propelled particles with alignment interaction. Math. Models Methods Appl. Sci. 20, 1459–1490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Figalli A., Gigli N.: A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions. J. Math. Pures Appl. 94, 107–130 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Figalli, A., Kang, M.-J., Morales, J.: Global well-posedness of spatially homogeneous Kolmogorov–Vicsek model as a gradient flow. http://arxiv.org/pdf/1509.02599 (preprint)

  15. Frouvelle A.: A continuum model for alignment of self-propelled particles with anisotropy and density dependent parameters. Math. Mod. Meth. Appl. Sci. 22, 1250011 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frouvelle A., Liu J.-G.: Dynamics in a kinetic model of oriented particles with phase transition. SIAM J. Math. Anal. 44, 791–826 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gamba, I.M., Haack, J.R., Motsch, S.: Spectral method for a kinetic swarming model. J. Comput. Phys. (2015). (To appear)

  18. Grégoire G., Chaté H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702 (2004)

    Article  ADS  Google Scholar 

  19. Ha, S.-Y., Jeong, E., Kang, M.-J.: Emergent behaviour of a generalized Viscek-type flocking model. Nonlinearity, 23, 3139–3156 (2010)

  20. Hsu, E.P.: Stochastic analysis on manifolds. In: Graduate Series in Mathematics. Am. Math. Soc., Providence (2002)

  21. Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kapper T.K., Mellet A., Trivisa K.: Existence of weak solutions to kinetic flocking models. SIAM J. Math. Anal. 45, 215–243 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lions, J.L.: Equations différentielles opérationelles et problèmes aux limites. Springer, Berlin, 1961

  24. Otto F., Tzavaras A.: Continuity of velocity gradients in suspensions of rod-like molecules. Commun. Math. Phys. 277, 729–758 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Perthame B., Souganidis P.E.: A limiting case for velocity averaging. Ann. Sci. École Norm. Sup. 31, 591–598 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Vicsek T., Czirók A., Ben-Jacob E., Cohen I., Shochet O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene M. Gamba.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamba, I.M., Kang, MJ. Global Weak Solutions for Kolmogorov–Vicsek Type Equations with Orientational Interactions. Arch Rational Mech Anal 222, 317–342 (2016). https://doi.org/10.1007/s00205-016-1002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1002-2

Keywords

Navigation