Abstract
We study the global existence and uniqueness of weak solutions to kinetic Kolmogorov–Vicsek models that can be considered as non-local, non-linear, Fokker–Planck type equations describing the dynamics of individuals with orientational interactions. This model is derived from the discrete Couzin–Vicsek algorithm as mean-field limit (Bolley et al., Appl Math Lett, 25:339–343, 2012; Degond et al., Math Models Methods Appl Sci 18:1193–1215, 2008), which governs the interactions of stochastic agents moving with a velocity of constant magnitude, that is, the corresponding velocity space for these types of Kolmogorov–Vicsek models is the unit sphere. Our analysis for L p estimates and compactness properties take advantage of the orientational interaction property, meaning that the velocity space is a compact manifold.
Similar content being viewed by others
References
Aldana M., Huepe C.: Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach. J. Stat. Phys 112, 135–153 (2003)
Bolley F., Cañizo J.A., Carrillo J.A.: Mean-field limit for the stochastic Vicsek model. Appl. Math. Lett, 25, 339–343 (2012)
Bostan M., Carrillo J.A.: Asymptotic fixed-speed reduced dynamics for kinetic equations in swarming. Math. Models Methods Appl. Sci. 23, 2353–2393 (2013)
Couzin I.D., Krause J., James R., Ruxton G.D., Franks N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)
Cucker F., Smale S.: Emergent behavior in flocks. IEEE Trans. Autom. Control, 52, 852–862 (2007)
Degond P.: Global existence of smooth solutions for the Vlasov–Fokker–Planck equation in 1 and 2 space dimensions. Ann. Sci. Ecole Norm. Sup. (4) 19, 519–542 (1986)
Degond P., Dimarco G., Mac T.B.N.: Hydrodynamics of the Kuramoto–Vicsek model of rotating self-propelled particles. Math. Models Methods Appl. Sci. 24, 277–325 (2014)
Degond P., Frouvelle A., Liu J.-G.: Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics. Arch. Rat. Mech. Anal. 216, 63–115 (2015)
Degond P., Frouvelle A., Liu J-G.: Macroscopic limits and phase transition in a system of self-propelled particles. J. Nonlinear Sci. 23, 427–456 (2012)
Degond P., Motsch S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18, 1193–1215 (2008)
Degond P., Motsch S.: Macroscopic limit of self-driven particles with orientation interaction. C. R. Acad. Sci. Paris Ser I. 345, 555–560 (2007)
Degond P., Yang T.: Diffusion in a continuum model of self-propelled particles with alignment interaction. Math. Models Methods Appl. Sci. 20, 1459–1490 (2010)
Figalli A., Gigli N.: A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions. J. Math. Pures Appl. 94, 107–130 (2010)
Figalli, A., Kang, M.-J., Morales, J.: Global well-posedness of spatially homogeneous Kolmogorov–Vicsek model as a gradient flow. http://arxiv.org/pdf/1509.02599 (preprint)
Frouvelle A.: A continuum model for alignment of self-propelled particles with anisotropy and density dependent parameters. Math. Mod. Meth. Appl. Sci. 22, 1250011 (2012)
Frouvelle A., Liu J.-G.: Dynamics in a kinetic model of oriented particles with phase transition. SIAM J. Math. Anal. 44, 791–826 (2012)
Gamba, I.M., Haack, J.R., Motsch, S.: Spectral method for a kinetic swarming model. J. Comput. Phys. (2015). (To appear)
Grégoire G., Chaté H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702 (2004)
Ha, S.-Y., Jeong, E., Kang, M.-J.: Emergent behaviour of a generalized Viscek-type flocking model. Nonlinearity, 23, 3139–3156 (2010)
Hsu, E.P.: Stochastic analysis on manifolds. In: Graduate Series in Mathematics. Am. Math. Soc., Providence (2002)
Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)
Kapper T.K., Mellet A., Trivisa K.: Existence of weak solutions to kinetic flocking models. SIAM J. Math. Anal. 45, 215–243 (2013)
Lions, J.L.: Equations différentielles opérationelles et problèmes aux limites. Springer, Berlin, 1961
Otto F., Tzavaras A.: Continuity of velocity gradients in suspensions of rod-like molecules. Commun. Math. Phys. 277, 729–758 (2008)
Perthame B., Souganidis P.E.: A limiting case for velocity averaging. Ann. Sci. École Norm. Sup. 31, 591–598 (1998)
Vicsek T., Czirók A., Ben-Jacob E., Cohen I., Shochet O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by D. Kinderlehrer
Rights and permissions
About this article
Cite this article
Gamba, I.M., Kang, MJ. Global Weak Solutions for Kolmogorov–Vicsek Type Equations with Orientational Interactions. Arch Rational Mech Anal 222, 317–342 (2016). https://doi.org/10.1007/s00205-016-1002-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-016-1002-2