Archive for Rational Mechanics and Analysis

, Volume 221, Issue 2, pp 559–602 | Cite as

Two Dimensional Subsonic Euler Flows Past a Wall or a Symmetric Body



The existence and uniqueness of two dimensional steady compressible Euler flows past a wall or a symmetric body are established. More precisely, given positive convex horizontal velocity in the upstream, there exists a critical value \({\rho_{\rm cr}}\) such that if the incoming density in the upstream is larger than \({\rho_{\rm cr}}\), then there exists a subsonic flow past a wall. Furthermore, \({\rho_{\rm cr}}\) is critical in the sense that there is no such subsonic flow if the density of the incoming flow is less than \({\rho_{\rm cr}}\). The subsonic flows possess large vorticity and positive horizontal velocity above the wall except at the corner points on the boundary. Moreover, the existence and uniqueness of a two dimensional subsonic Euler flow past a symmetric body are also obtained when the incoming velocity field is a general small perturbation of a constant velocity field and the density of the incoming flow is larger than a critical value. The asymptotic behavior of the flows is obtained with the aid of some integral estimates for the difference between the velocity field and its far field states.


Vorticity Stream Function Stagnation Point Subsonic Flow Euler System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Surveys in Applied Mathematics, Vol. 3. Wiley, New York, 1958Google Scholar
  2. 2.
    Bers L.: Existence and uniqueness of a subsonic flow past a given profile. Commun. Pure Appl. Math. 7, 441–504 (1954)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chen C., Xie C.J.: Existence of steady subsonic Euler flows through infinitely long periodic nozzles. J. Differ. Equ. 252, 4315–4331 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chen C., Xie C.J.: Three dimensional steady subsonic Euler flows in bounded nozzles. J. Differ. Equ. 256, 3684–3708 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chen G.Q., Dafermos C., Slemrod M., Wang D.H.: On two-dimensional sonic-subsonic flow. Commun. Math. Phys. 271, 635–647 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chen G.Q., Deng X.M., Xiang W.: Global steady subsonic flows through infinitely long nozzles for the full Euler equations. SIAM J. Math. Anal. 44, 2888–2919 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen G.Q., Feldman M.: Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixted type. J. Am. Math. Soc. 16, 461–494 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chen G.Q., Huang F.M., Wang T.Y.: Sonic-subsonic limit of approximate solutions to multidimensional steady Euler equations. Arch. Rational Mech. Anal. 219, 719–740 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chen J.: Subsonic flows for the full Euler equations in half plane. J. Hyperbolic Differ. Equ. 6, 207–228 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chen S.X., Yuan H.R.: Transonic shocks in compressible flow passing a duct for three-dimesional Euler systems. Arch. Rational Mech. Anal. 187, 523–556 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dong G.C., Ou B.: Subsonic flows around a body in space. Commun. Partial Differ. Equ. 18, 355–379 (1993)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Du L.L., Duan B.: Global subsonic Euler flows in an infinitely long axisymmetric nozzle. J. Differ. Equ. 250, 813–847 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Du L.L., Duan B.: Note on the uniqueness of subsonic Euler flows in an axisymmetric nozzle. Appl. Math. Lett. 25, 153–156 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Du L.L., Weng S.K., Xin Z.P.: Subsonic irrotational flows in a finitely long nozzle with variable end pressure. Commun. Partial Differ. Equ. 39, 666–695 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Du L.L., Xie C.J.: On subsonic Euler flows with stagnation points in two dimensional nozzles. Indiana Univ. Math. J. 63, 1499–1523 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Du L.L., Xie C.J., Xin Z.P.: Steady subsonic ideal flows through an infinitely long nozzle with large vorticity. Commun. Math. Phys. 328, 327–354 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Du L.L., Xin Z.P., Yan W.: Subsonic flows in a multi-dimensional nozzle. Arch. Rational Mech. Anal. 201, 965–1012 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Duan B., Luo Z.: Three-dimensional full Euler flows in axisymmetric nozzles. J. Differ. Equ. 254, 2705–2731 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Evans. L.C.: Partial differential equations, Graduate Studies in Mathematics, Vol. 19. American Mathematical Society, Providence, 1998Google Scholar
  20. 20.
    Finn R., Gilbarg D.: Asymptotic behavior and uniqueness of plane subsonic flows. Commun. Pure Appl. Math. 10, 23–63 (1957)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Finn R., Gilbarg D.: Three-dimensional subsonic flows, and asymptotic estimates for elliptic partial differential equations. Acta Math. 98, 265–296 (1957)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Gilbarg D., Shiffman M.: On bodies achieving extreme values of the critical Mach number. I. J. Rational Mech. Anal. 3, 209–230 (1954)MathSciNetMATHGoogle Scholar
  23. 23.
    Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer, Berlin (2001)MATHGoogle Scholar
  24. 24.
    Huang F.M., Wang T.Y., Wang Y.: On multi-dimensional sonic-subsonic flow. Acta Math. Sci. 31, 2131–2140 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Li J., Xin Z.P., Yin H.C.: On transonic shocks in a nozzle with variable end pressures. Commun. Math. Phys. 291, 111–150 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Li J., Xin Z.P., Yin H.C.: Transonic shocks for the full compressible Euler system in a general two-dimensional de Laval nozzle. Arch. Rational Mech. Anal. 207, 533–581 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Morawetz C.S.: On the non-existence of continuous transonic flows past profiles. I. Commun. Pure Appl. Math. 9, 5–68 (1956)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Morawetz C.S.: On the non-existence of continuous transonic flows past profiles. II. Commun. Pure Appl. Math. 10, 107–131 (1957)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Morawetz C.S.: On the non-existence of continuous transonic flows past profiles. III. Commun. Pure Appl. Math. 11, 129–144 (1958)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Nadirasvili N.S.: Lemma on the interior derivative and uniqueness of the solution of the second boundary value problem for second-order elliptic equations. Soviet Math. Dokl 24, 598–601 (1981)Google Scholar
  31. 31.
    Shiffman M.: On the existence of subsonic flows of a compressible fluid. J. Rational Mech. Anal. 1, 605–652 (1952)MathSciNetMATHGoogle Scholar
  32. 32.
    Wang C.P., Xin Z.P.: Optimal Holder continuity for a class of degenarate elliptic problems with an application to subsonic-sonic flows. Commun. Partial Differ. Equ. 36, 873–924 (2011)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Wang C.P., Xin Z.P.: On a degenerate free boundary problem and continuous subsonic-sonic flows in a convergent nozzle. Arch. Rational Mech. Anal. 208, 911–975 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Wang, C.P., Xin, Z.P.: Smooth Transonic Flows in De Laval Nozzles. arXiv:1304.2473
  35. 35.
    Weng S.K.: Subsonic irrotational flows in a two-dimensional finitely long curved nozzle. Zeitschrift für Angewandte Mathematik und Physik 65, 203–220 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Weng, S.K.: A new formulation for the 3-D Euler equations with an application to subsonic flows in a cylinder. arXiv:1212.1635
  37. 37.
    Xie C.J., Xin Z.P.: Global subsonic and subsonic-sonic flows through infinitely long nozzles. Indiana Univ. Math. J. 56, 2991–3023 (2007)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Xie C.J., Xin Z.P.: Global subsonic and subsonic-sonic flows through infinitely long axially symmetric nozzles. J. Differ. Equ. 248, 2657–2683 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Xie C.J., Xin Z.P.: Existence of global steady subsonic Euler flows through infinitely long nozzle. SIAM J. Math. Anal. 42, 751–784 (2010)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Xin Z.P., Yin H.C.: Transonic shock in a nozzle, I. Two-dimensional case. Comm. Pure Appl. Math. 58, 999–1050 (2005)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Xin Z.P., Yin H.C.: The transonic shock in a nozzle, 2-D and 3-D complete Euler systems. J. Differ. Equ. 245, 1014–1085 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chao Chen
    • 1
  • Lili Du
    • 2
  • Chunjing Xie
    • 3
  • Zhouping Xin
    • 4
  1. 1.School of Mathematics and Computer ScienceFujian Normal UniversityFuzhouPeople’s Republic of China
  2. 2.Department of MathematicsSichuan UniversityChengduPeople’s Republic of China
  3. 3.Department of Mathematics, Institute of Natural SciencesMinistry of Education Key Laboratory of Scientific and Engineering Computing, SHL-MAC, Shanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  4. 4.The Institute of Mathematical Sciences and Department of MathematicsThe Chinese University of Hong KongShatinHong Kong

Personalised recommendations