Abstract
We consider the evolution of quasi-free states describing N fermions in the mean field limit, as governed by the nonlinear Hartree equation. In the limit of large N, we study the convergence towards the classical Vlasov equation. For a class of regular interaction potentials, we establish precise bounds on the 0rate of convergence.
Similar content being viewed by others
References
Amour L., Khodja M., Nourrigat J.: The semiclassical limit of the time dependent Hartree–Fock equation: the Weyl symbol of the solution. Anal. PDE 6(7), 1649–1674 (2013)
Amour L., Khodja M., Nourrigat J.: The classical limit of the Heisenberg and time dependent Hartree–Fock equations: the Wick symbol of the solution. Math. Res. Lett. 20(1), 119–139 (2013)
Athanassoulis A., Paul T., Pezzotti F., Pulvirenti M.: Strong semiclassical approximation of Wigner functions for the Hartree dynamics. Rend. Lincei Mat. Appl. 22, 525–552 (2011)
Bach, V., Breteaux, S., Petrat, S., Pickl, P., Tzaneteas, T.: Kinetic energy estimates for the accuracy of the time-dependent Hartree–Fock approximation with Coulomb interaction (preprint). arXiv:1403.1488
Bardos C., Golse F., Gottlieb A.D., Mauser N.J.: Mean field dynamics of fermions and the time-dependent Hartree–Fock equation. J. Math. Pures Appl. (9) 82(6), 665–683 (2003)
Benedikter, N., Jaksic, V., Porta, M., Saffirio, C., Schlein, B.: Mean-field evolution of fermionic mixed states Comm. Pure Appl. Math. doi:10.1062/cpa.21538
Benedikter N., Porta M., Schlein B.: Mean-field evolution of fermionic systems. Commun. Math. Phys. 331, 1087–1131 (2014)
Dobrushin R.L.: Vlasov equations. Funct. Anal. Appl. 13(2), 115–123 (1979)
Elgart A., Erdos L., Schlein B., Yau H.-T.: Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. (9) 83(10), 1241–1273 (2004)
Fröhlich J., Knowles A.: A microscopic derivation of the time-dependent Hartree–Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145(1), 23–50 (2011)
Gasser I., Illner R., Markowich P.A., Schmeiser C.: Semiclassical, t → ∞ asymptotics and dispersive effects for HF systems. Math. Model. Numer. Anal. 32, 699–713 (1998)
Graffi S., Martinez A., Pulvirenti M.: Mean-field approximation of quantum systems and classical limit. Math. Models Methods Appl. Sci. 13(1), 59–73 (2003)
Lions P.-L., Paul T.: Sur les mesures de Wigner. Rev. Mat. Iberoam. 9, 553–618 (1993)
Markowich P.A., Mauser N.J.: The classical limit of a self-consistent quantum Vlasov equation. Math. Models Methods Appl. Sci. 3(1), 109–124 (1993)
Narnhofer H., Sewell G.L.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79(1), 9–24 (1981)
Prodan E., Nordlander P.: Hartree approximation I: The fixed point approach. J. Math. Phys. 42, 3390–3406 (2001)
Pezzotti F., Pulvirenti M.: Mean-field limit and semiclassical expansion of a quantum particle system. Ann. Henri Poincaré 10(1), 145–187 (2009)
Petrat S., Pickl P.: A new method and a new scaling for deriving fermionic mean-field dynamics. arXiv:1409.0480
Prodan E.: Symmetry breaking in the self-consistent Kohn–Sham equations. J. Phys. A Math. Gen. 38, 5647–5657 (2005)
Solovej J.P.; Many body quantum mechanics. In: Lecture Notes, Summer 2007. https://www.mathematik.uni-muenchen.de/~lerdos/WS08/QM/solovejnotes.pdf
Spohn H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3(4), 445–455 (1981)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by S. Serfaty
Rights and permissions
About this article
Cite this article
Benedikter, N., Porta, M., Saffirio, C. et al. From the Hartree Dynamics to the Vlasov Equation. Arch Rational Mech Anal 221, 273–334 (2016). https://doi.org/10.1007/s00205-015-0961-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-015-0961-z