Archive for Rational Mechanics and Analysis

, Volume 220, Issue 1, pp 155–191 | Cite as

Subsonic Flow for the Multidimensional Euler–Poisson System

Article

Abstract

We establish the existence and stability of subsonic potential flow for the steady Euler–Poisson system in a multidimensional nozzle of a finite length when prescribing the electric potential difference on a non-insulated boundary from a fixed point at the exit, and prescribing the pressure at the exit of the nozzle. The Euler–Poisson system for subsonic potential flow can be reduced to a nonlinear elliptic system of second order. In this paper, we develop a technique to achieve a priori \({C^{1,\alpha}}\) estimates of solutions to a quasi-linear second order elliptic system with mixed boundary conditions in a multidimensional domain enclosed by a Lipschitz continuous boundary. In particular, we discovered a special structure of the Euler–Poisson system which enables us to obtain \({C^{1,\alpha}}\) estimates of the velocity potential and the electric potential functions, and this leads us to establish structural stability of subsonic flows for the Euler–Poisson system under perturbations of various data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ascher U.M., Markowich P.A., Pietra P., Schmeiser C.: A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model. Math. Models Methods Appl. Sci. 1(3), 347–376 (1991)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Bae M., Duan B., Xie C.J.: Subsonic solutions for steady Euler–Poisson system in two-dimensional nozzles. SIAM J. Math. Anal. 46(5), 3455–3480 (2014)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bae, M., Duan, B., Xie, C.J.: Two dimensional subsonic flows with self-gravitation in bounded domain, Math. Models Methods Appl. Sci. (2015). doi:10.1142/S0218202515500591
  4. 4.
    Chen D.P., Eisenberg R.S., Jerome J.W., Shu C.W.: A hydrodynamic model of temperature change in open ionic channels. Biophys J. 69, 2304–2322 (1995)CrossRefADSGoogle Scholar
  5. 5.
    Chen G.-Q., Feldman M.: Existence and stability of multidimensional transonic flows through an infinite nozzle of arbitrary cross-sections. Arch. Rational Mech. Anal. 184(2), 185–242 (2007)CrossRefADSMathSciNetMATHGoogle Scholar
  6. 6.
    Chen G.-Q., Wang D.-H.: Convergence of shock capturing schemes for the compressible Euler–Poisson equations. Commun. Math. Phys. 179(2), 333–364 (1996)CrossRefADSMATHGoogle Scholar
  7. 7.
    Chen G.-Q., Wang D.-H.: Formation of singularities in compressible Euler–Poisson fluids with heat diffusion and damping relaxation. J. Differ. Equ. 144(1), 44–65 (1998)CrossRefADSMATHGoogle Scholar
  8. 8.
    Chen S.-X., Yuan H.-R.: Transonic shocks in compressible flow passing a duct for three dimensional Euler system. Arch. Rational Mech. Anal. 187(3), 523–556 (2008)CrossRefADSMathSciNetMATHGoogle Scholar
  9. 9.
    Degond P., Markowich P.A.: On a one-dimensional steady-state hydrodynamic model for semiconductors. Appl. Math. Lett. 3(3), 25–29 (1990)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Degond, P., Markowich, P.A.: A steady state potential flow model for semiconductors. Ann. Mat. Pura Appl. (4) 165, 87–98 (1993)Google Scholar
  11. 11.
    Gamba I.M.: Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors. Commun. Partial Differ. Equ. 17(3–4), 553–577 (1992)MathSciNetMATHGoogle Scholar
  12. 12.
    Gamba I.M., Morawetz C.S.: A viscous approximation for a 2-D steady semiconductor or transonic gas dynamic flow: existence theorem for potential flow. Commun. Pure Appl. Math. 49(10), 999–1049 (1996)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1998)Google Scholar
  14. 14.
    Guo Y., Strauss W.: Stability of semiconductor states with insulating and contact boundary conditions. Arch. Rational Mech. Anal. 179(1), 1–30 (2006)CrossRefADSMathSciNetMATHGoogle Scholar
  15. 15.
    Han, Q., Lin, F.: Elliptic partial differential equations. Courant Institute of Math. Sci., NYU (1997)Google Scholar
  16. 16.
    Huang F., Pan R., Yu H.: Large time behavior of Euler–Poisson system for semiconductor. Sci. China Ser. A 51(5), 965–972 (2008)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Li H., Markowich P.A., Mei M.: Asymptotic behavior of subsonic entropy solutions of the isentropic Euler–Poisson equations. Q. Appl. Math. 60(4), 773–796 (2002)MathSciNetMATHGoogle Scholar
  18. 18.
    Li J., Xin Z.-P., Yin H.-C.: On transonic shocks in a nozzle with variable end pressures. Commun. Math. Phys. 291(1), 111–150 (2009)CrossRefADSMathSciNetMATHGoogle Scholar
  19. 19.
    Lieberman, G.: Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions. Ann. Mat. Pura Appl. (4) 148, 77–99 (1987)Google Scholar
  20. 20.
    Luo T., Natalini R., Xin Z.-P.: Large time behavior of the solutions to a hydrodynamic model for semiconductors. SIAM J. Appl. Math. 59(3), 810–830 (1999)MathSciNetMATHGoogle Scholar
  21. 21.
    Luo T., Rauch J., Xie C., Xin Z.-P.: Stability of transonic shock solutions for one-dimensional Euler–Poisson equations. Arch. Rational Mech. Anal. 202(3), 787–827 (2011)CrossRefADSMathSciNetMATHGoogle Scholar
  22. 22.
    Luo T., Xin Z.-P.: Transonic shock solutions for a system of Euler–Poisson equations. Commun. Math. Sci. 10(2), 419–462 (2012)CrossRefADSMathSciNetMATHGoogle Scholar
  23. 23.
    Markowich P.A.: On steady state Euler–Poisson models for semiconductors. Z. Angew. Math. Phys. 42(3), 389–407 (1991)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Vienna, 1990Google Scholar
  25. 25.
    Peng Y.-J., Violet I.: Example of supersonic solutions to a steady state Euler-Poisson system. Appl. Math. Lett. 19(12), 1335–1340 (2006)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Rosini M.D.: Stability of transonic strong shock waves for the one-dimensional hydrodynamic model for semiconductors. J. Differ. Equ. 199(2), 326–351 (2004)CrossRefADSMathSciNetMATHGoogle Scholar
  27. 27.
    Rosini M.D.: A phase analysis of transonic solutions for the hydrodynamic semiconductor model. Q. Appl. Math. 63(2), 251–268 (2005)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Xin Z.-P., Yin H.-C.: Transonic shock in a nozzle. I. Two-dimensional case. Commun. Pure Appl. Math. 58(8), 999–1050 (2005)CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Zhang B.: Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices. Commun. Math. Phys. 157(1), 1–22 (1993)CrossRefADSMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of MathematicsPOSTECHPohangKorea
  2. 2.School of Mathematical SciencesDalian University of TechnologyDalianChina
  3. 3.School of Business Informatics and MathematicsUniversity of MannheimMannheimGermany
  4. 4.Department of Mathematics, Institute of Natural Sciences, Ministry of Education Key Laboratory of Scientific and Engineering Computing, SHL-MACShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations