Adams R.A.: Sobolev spaces. Academic Press, New York (1975)
MATH
Google Scholar
Aubin T.: Problèmes isopèrimétriques et espaces de Sobolev. J. Diff. Géom. 11, 573–598 (1976)
MathSciNet
MATH
Google Scholar
Bellazzini J., Frank R.L., Visciglia N.: Maximizers for Gagliardo–Nirenberg inequalities and related non-local problems. Math. Ann. 360, 653–673 (2014)
MathSciNet
Article
MATH
Google Scholar
Bellazzini, J., Ozawa, T., Visciglia, N.: Ground states for semi-relativistic Schrödinger-Poisson-Slater energies, arXiv:1103.2649 (2011)
Calogero F.: Ground state of a one-dimensional N-body system. J. Math. Phys. 10, 2197–2200 (1969)
ADS
MathSciNet
Article
Google Scholar
Cotsiolis A., Tavoularis N.K.: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295, 225–236 (2004)
MathSciNet
Article
MATH
Google Scholar
Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry. Springer-Verlag, Berlin, Heidelberg (1987)
Daubechies I.: An uncertainty principle for fermions with generalized kinetic energy. Commun. Math. Phys. 90, 511–520 (1983)
ADS
MathSciNet
Article
MATH
Google Scholar
Dyson F.J., Lenard A.: Stability of matter. I. J. Math. Phys. 8, 423–434 (1967)
ADS
MathSciNet
Article
MATH
Google Scholar
Ekholm T., Enblom A.: Critical Hardy–Lieb–Thirring inequalities for fourth-order operators in low dimensions. Lett. Math. Phys. 94, 293–312 (2010)
ADS
MathSciNet
Article
MATH
Google Scholar
Ekholm T., Frank R.L.: On Lieb–Thirring inequalities for Schrödinger operators with virtual level. Commun. Math. Phys. 264(3), 725–740 (2006)
ADS
MathSciNet
Article
MATH
Google Scholar
Fefferman C., de la Llave R.: Relativistic stability of matter. I. Rev. Mat. Iberoam. 2, 119–213 (1986)
Article
Google Scholar
Frank, R.L., Geisinger, L.: Refined semiclassical asymptotics for fractional powers of the Laplace operator. J. Reine Angew. Math. doi:10.1515/crelle-2013-0120 (ahead of print)
Frank R.L., Lieb E.H., Seiringer R.: Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators. J. Amer. Math. Soc. 21, 925–950 (2007)
MathSciNet
Article
Google Scholar
Frank R. L.: A simple proof of Hardy–Lieb–Thirring inequalities. Commun. Math. Phys. 290, 789–800 (2009)
ADS
Article
Google Scholar
Frank R.L., Seiringer R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430 (2008)
MathSciNet
Article
MATH
Google Scholar
Frank R.L., Seiringer R.: Lieb–Thirring inequality for a model of particles with point interactions. J. Math. Phys. 53, 095201 (2012)
ADS
MathSciNet
Article
Google Scholar
Girardeau M.: Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516–523 (1960)
ADS
MathSciNet
Article
MATH
Google Scholar
Grubb, G.: Regularity of spectral fractional Dirichlet and Neumann problems. arXiv:1412.3744
Hainzl C., Seiringer R.: General decomposition of radial functions on \({{\mathbb{R}}^n}\) and applications to N-body quantum systems. Lett. Math. Phys. 61, 75–84 (2002)
MathSciNet
Article
MATH
Google Scholar
Herbst I.W.: Spectral theory of the operator \({(p^2+m^2)^{1/2}-Ze^2/r}\). Commun. Math. Phys. 53, 285–294 (1977)
ADS
MathSciNet
Article
MATH
Google Scholar
Hoffmann-Ostenhof M., Hoffmann-Ostenhof T.: Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules. Phys. Rev. A 16, 1782–1785 (1977)
ADS
MathSciNet
Article
Google Scholar
Hurri-Syrjänen R., Vähäkangas A.V.: On fractional Poincaré inequalities. J. Anal. Math. 120, 85–104 (2013)
MathSciNet
Article
MATH
Google Scholar
Knuepfer H., Muratov C.B.: On an isoperimetric problem with a competing non-local term. I. The planar case. Comm. Pure Appl. Math. 66, 1129–1162 (2013)
MathSciNet
Article
MATH
Google Scholar
Knuepfer H., Muratov C.B.: On an isoperimetric problem with a competing non-local term. II. The general case. Comm. Pure Appl. Math. 67, 1174–1194 (2014)
Google Scholar
Lenard A., Dyson F.J.: Stability of matter. II. J. Math. Phys. 9, 698–711 (1968)
ADS
MathSciNet
Article
MATH
Google Scholar
Lieb E.H.: A lower bound for Coulomb energies. Phys. Lett. A 70, 444–446 (1979)
ADS
MathSciNet
Article
Google Scholar
Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, 2nd edn, vol. 14. American Mathematical Society, Providence (2001)
Lieb E.H., Oxford S.: Improved lower bound on the indirect Coulomb energy. Int. J. Quantum Chem. 19, 427–439 (1980)
Article
Google Scholar
Lieb E.H., Seiringer R.: The stability of matter in quantum mechanics. Cambridge University Press, Cambridge (2010)
Google Scholar
Lieb E.H., Solovej J.P., Yngvason J.: Ground states of large quantum dots in magnetic fields. Phys. Rev. B 51, 10646–10665 (1995)
ADS
Article
Google Scholar
Lieb E.H., Thirring W.E.: Bound on kinetic energy of fermions which proves stability of matter. Phys. Rev. Lett. 35, 687–689 (1975)
ADS
Article
Google Scholar
Lieb, E.H., Thirring, W.E.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics. pp. 269–303. Princeton University Press, Princeton (1976)
Lieb E.H., Yau H.-T.: The stability and instability of relativistic matter. Commun. Math. Phys. 118(2), 177–213 (1988)
ADS
MathSciNet
Article
MATH
Google Scholar
Lieb E.H., Yngvason J.: The ground state energy of a dilute two-dimensional Bose gas. J. Stat. Phys. 103, 509–526 (2001)
MathSciNet
Article
MATH
Google Scholar
Lundholm D., Portmann F., Solovej J.P.: Lieb–Thirring bounds for interacting Bose gases. Commun. Math. Phys. 335, 1019–1056 (2015)
ADS
MathSciNet
Article
MATH
Google Scholar
Lundholm D., Solovej J.P.: Hardy and Lieb–Thirring inequalities for anyons. Commun. Math. Phys. 322, 883–908 (2013)
ADS
MathSciNet
Article
MATH
Google Scholar
Lundholm D., Solovej J.P.: Local exclusion and Lieb–Thirring inequalities for intermediate and fractional statistics. Ann. Henri Poincaré 15, 1061–1107 (2014)
ADS
MathSciNet
Article
MATH
Google Scholar
Muratov C.: Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions. Commun. Math. Phys. 299, 45–87 (2010)
ADS
MathSciNet
Article
MATH
Google Scholar
Musina R., Nazarov A.I.: On fractional Laplacians. Comm. Part. Differ. Equ. 39, 1780–1790 (2014)
MathSciNet
Article
MATH
Google Scholar
Rumin A.: Balanced distribution-energy inequalities and related entropy bounds. Duke Math. J. 160, 567–597 (2011)
MathSciNet
Article
MATH
Google Scholar
Servadei R., Valdinoci E.: On the spectrum of two different fractional operators. Proc. R. Soc. A 144, 831–855 (2014)
MathSciNet
MATH
Google Scholar
Solomyak M.: A remark on the Hardy inequalities. Integral Equ. Oper. Theory 19, 120–124 (1994)
MathSciNet
Article
MATH
Google Scholar
Solovej J.P., Sørensen T.Ø., Spitzer W.L.: Relativistic Scott correction for atoms and molecules. Comm. Pure Appl. Math. 63, 39–118 (2010)
MathSciNet
Article
MATH
Google Scholar
Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32. Princeton University Press, Princeton. (1971)
Sutherland B.: Quantum many-body problem in one dimension: ground state. J. Math. Phys. 12, 246–250 (1971)
ADS
Article
Google Scholar
Talenti G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)
MathSciNet
Article
MATH
Google Scholar
Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)
Yafaev D.: Sharp Constants in the Hardy–Rellich inequalities. J. Func. Anal. 168, 121–144 (1999)
MathSciNet
Article
MATH
Google Scholar