Skip to main content
Log in

New Periodic Solutions for Newtonian n-Body Problems with Dihedral Group Symmetry and Topological Constraints

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we prove the existence of a family of new non-collision periodic solutions for the classical Newtonian n-body problems. In our assumption, the \({n=2l \geqq 4}\) particles are invariant under the dihedral rotation group D l in \({\mathbb{R}^3}\) such that, at each instant, the n particles form two twisted l-regular polygons. Our approach is the variational minimizing method and we show that the minimizers are collision-free by level estimates and local deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1964. doi:10.1119/1.15378

  2. Albouy, A.: Lectures on the two body problem. In: Carbral, H., Diacu, F. (eds.) Classical and Celestial Mechanics (The Recife Lectures). Princeton University Press, Princeton, 2002

  3. Chen K.C.: Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses. Ann. Math. 167, 325–348 (2008). doi:10.4007/annals.2008.167.325

    Article  MATH  Google Scholar 

  4. Chenciner, A.: Action minimizing solutions of the n-body problem: from homology to symmetry. In:Proceedings of the ICM, Beijing, 2002

  5. Chenciner, A.: Symmetries and “simple” solutions of the classical n-body problem. In: ICMP03, 2003. doi:10.1142/9789812704016_0002

  6. Chenciner A., Montgomery R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. Math. 152, 881–902 (2000). doi:10.2307/2661357

    MathSciNet  MATH  Google Scholar 

  7. Ferrario D.L., Portaluri A.: On the dihedral n-body problem. Nonlinearity 21, 1307–1321 (2008). doi:10.1088/0951-7715/21/6/009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ferrario D.L., Terracini S.: On the existence of collisionless equivariant minimizers for the classical n-body problem. Invent. Math. 155, 305–362 (2004). doi:10.1007/s00222-003-0322-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Fusco G., Gronchi G.F., Negrini P.: Platonic polyhedra, topological constraints and periodic solutions of the classical n-body problem. Invent. Math. 185, 283–332 (2011). doi:10.1007/s00222-010-0306-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Gordon W.B.: A minimizing property of Keplerian orbits. Am. J. Math. 99, 961–971 (1977). doi:10.2307/2373993

    Article  MATH  Google Scholar 

  11. Grove, L.C., Benson, C.T.: Finite Reflection Groups. Springer, Berlin, 1985. doi:10.1007/978-1-4757-1869-0

  12. Marchal C.: How the method of minimization of action avoids singularities. Celest. Mech. Dyn. Astron. 83, 325–353 (2002). doi:10.1023/A:1020128408706

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Moeckel, R., Simó, C.: Bifurcation of spatial central configurations from planar ones. SIAM J. Math. Anal. 26, 978–998 (1995). doi:10.1137/S0036141093248414

  14. Montgomery R.: The N-body problem, the braid group, and action-minimizing periodic solutions. Nonlinearity 11, 363–376 (1998). doi:10.1088/0951-7715/11/2/011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Palais R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 9–30 (1979). doi:10.1007/BF01941322

    Article  ADS  MathSciNet  Google Scholar 

  16. Shibayama M.: Minimizing periodic orbits with regularizable collisions in the n-body problem. Arch. Ration. Mech. Anal. 199, 821–841 (2011). doi:10.1007/s00205-010-0334-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, vol. 34. Springer, Berlin, 2008. doi:10.1007/978-3-662-04194-9

  18. Terracini, S., Venturelli, A.: Symmetric trajectories for the 2N-body problem with equal masses. Arch. Ration. Mech. Anal. 184, 465–493 (2007). doi:10.1007/s00205-006-0030-8

  19. Venturelli, A.: Une caractérisation variationnelle des solutions de Lagrange du problème plan des trois corps. C. R. Acad. Sci. Paris 332, 641–644 (2001). doi:10.1016/S0764-4442(01)01788-8

  20. Zhang S.Q., Zhou Q.: A minimizing property of Lagrangian solution. Acta Math. Sin. 17, 497–500 (2001). doi:10.1007/s101140100124

    Article  MATH  Google Scholar 

  21. Zhang S.Q., Zhou Q.: Variational methods for the choreography solution to the three-body problem. Sci. China 45, 594–597 (2002). doi:10.1360/02ys9063

    MATH  Google Scholar 

  22. Zhang S.Q., Zhou Q.: Nonplanar and noncollision periodic solutions for N-body problems. Disc. Cont. Dyn. Syst. 10, 679–685 (2004). doi:10.3934/dcds.2004.10.679

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Wang.

Additional information

Communicated by P. Rabinowitz

Dedicated to Professor Kung-Ching Chang for his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, S. New Periodic Solutions for Newtonian n-Body Problems with Dihedral Group Symmetry and Topological Constraints. Arch Rational Mech Anal 219, 1185–1206 (2016). https://doi.org/10.1007/s00205-015-0919-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0919-1

Keywords

Navigation