Abstract
In this work we study the long time inviscid limit of the two dimensional Navier–Stokes equations near the periodic Couette flow. In particular, we confirm at the nonlinear level the qualitative behavior predicted by Kelvin’s 1887 linear analysis. At high Reynolds number Re, we prove that the solution behaves qualitatively like two dimensional Euler for times \({{t \lesssim Re^{1/3}}}\), and in particular exhibits inviscid damping (for example the vorticity weakly approaches a shear flow). For times \({{t \gtrsim Re^{1/3}}}\), which is sooner than the natural dissipative time scale O(Re), the viscosity becomes dominant and the streamwise dependence of the vorticity is rapidly eliminated by an enhanced dissipation effect. Afterwards, the remaining shear flow decays on very long time scales \({{t \gtrsim Re}}\) back to the Couette flow. When properly defined, the dissipative length-scale in this setting is \({{\ell_D \sim Re^{-1/3}}}\), larger than the scale \({{\ell_D \sim Re^{-1/2}}}\) predicted in classical Batchelor–Kraichnan two dimensional turbulence theory. The class of initial data we study is the sum of a sufficiently smooth function and a small (with respect to Re −1) L 2 function.
Similar content being viewed by others
References
Bahouri H., Chemin J.-Y., Danchin R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg, 2011
Bajer K., Bassom A.P., Gilbert A.D.: Accelerated diffusion in the centre of a vortex. J. Fluid Mech. 437, 395–411 (2001)
Balmforth N.J., Morrison P.J.: Normal modes and continuous spectra. Ann. N. Y. Acad. Sci. 773(1), 80–94 (1995)
Balmforth N.J., Morrison P.J., Thiffeault J.-L.: Pattern Formation in Hamiltonian Systems with Continuous Spectra; A Normal-Form Single-Wave Model (2013, preprint)
Bardos C., Titi E.S., Wiedemann E.: The vanishing viscosity as a selection principle for the Euler equations: the case of 3D shear flow. C. R. Math. 350(15), 757–760 (2012)
Bassom A.P., Gilbert A.D.: The spiral wind-up of vorticity in an inviscid planar vortex. J. Fluid Mech. 371, 109–140 (1998)
Batchelor G.K.: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12(12), II–233 (1969)
Beck M., Wayne C.E.: Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier–Stokes equations. Proc. R. Soc. Edinb. Sec. A Math. 143(05), 905–927 (2013)
Bedrossian J., Masmoudi N., Mouhot C.: Landau damping: paraproducts and Gevrey regularity (2013). arXiv:1311.2870
Bedrossian J., Masmoudi N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. de l’IHÉS 1–106 (2013)
Berestycki H., Hamel F., Nadirashvili N.: Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena. Commun. Math. Phys. 253(2), 451–480 (2005)
Bernoff A.J., Lingevitch J.F.: Rapid relaxation of an axisymmetric vortex. Phys. Fluids 63717–3723 (1994)
Bony J.M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non lináires. Ann. Sci. E. N. S. 14, 209–246 (1981)
Bouchet F., Morita H.: Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations. Phys. D 239, 948–966 (2010)
Boyd J.P.: The continuous spectrum of linear Couette flow with the beta effect. J. Atmos. Sci. 40(9), 2304–2308 (1983)
Briggs R.J., Daugherty J.D., Levy R.H.: Role of Landau damping in crossed-field electron beams and inviscid shear flow. Phys. Fluid 13(2), 421–432 (1970)
Buckmaster T., De Lellis C., Székelyhidi Jr L.: Dissipative euler flows with Onsager-critical spatial regularity (2014). arXiv:1404.6915
Caglioti E., Maffei C.: Time asymptotics for solutions of Vlasov–Poisson equation in a circle. J. Stat. Phys. 92(1/2), 301–323 (1998)
Cardoso O., Tabeling P.: Anomalous diffusion in a linear array of vortices. EPL (Europhysics Letters) 7(3), 225 (1988)
Chapman S.J.: Subcritical transition in channel flows. J. Fluid Mech. 451, 35–98 (2002)
Constantin P., Kiselev A., Ryzhik L., Zlatoš A.: Diffusion and mixing in fluid flow. Ann. Math. (2) 168(2), 643–674 (2008)
De Lellis C., Székelyhidi Jr., L.: Dissipative Euler flows and Onsager’s conjecture (2012). arXiv preprint arXiv:1205.3626
De Lellis C., Székelyhidi L. Jr.: The h-principle and the equations of fluid dynamics. Bull. Am. Math. Soc. 49(3), 347–375 (2012)
Drazin P.G., Reid W.H.: Hydrodynamic stability. Cambridge University Press, Cambridge, 1981
Ellingsen T., Palm E.:: Stability of linear flow. Phys. Fluids 18, 487 (1975)
Faou E., Rousset F.: Landau Damping in Sobolev Spaces for the Vlasov-HMF model (2014). arXiv:1403.1668
Foias C., Temam R.: Gevrey class regularity for solutions of the Navier–Stokes equations. J. Funct. Anal. 87, 359–369 (1989)
Gevrey M.: Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire. Ann. Sci. École Norm. Sup. (3) 35, 129–190 (1918)
Gilbert A.D.: Spiral structures and spectra in two-dimensional turbulence. J. Fluid Mech. 193, 475–497 (1988)
Gilbert A.D.: A cascade interpretation of lundgren’s stretched spiral vortex model for turbulent fine structure. Phys. Fluids A Fluid Dyn. 5, 2831 (1993)
Grenier E., Guo Y., Nguyen T.: Spectral instability of characteristic boundary layer flows (2014). arXiv:1406.3862
Haynes P.H., Vanneste J.: Dispersion in the large-deviation regime. Part 1, shear flows and periodic flows–J Fluid Mech 745321–350 (2014)
Hörmander L.: The Nash–Moser theorem and paradifferential operators. Anal. et cetera 429–449 (1990)
Hwang H.J., Velaźquez J.J.L.: On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem. Indiana Univ. Math. J 58(6), 2623–2660 (2009)
Isett P.: Hölder continuous Euler flows in three dimensions with compact support in time (2012). arXiv preprint arXiv:1211.4065
Iyer G., Novikov A.: Anomalous diffusion in fast cellular flows at intermediate time scales (2014). arXiv:1406.3881
Kelvin L.: Stability of fluid motion-rectilinear motion of viscous fluid between two parallel plates. Philos. Mag. 5(24), 188 (1887)
Kolmogorov A.N.: Dissipation of energy in locally isotropic turbulence. Dokl.Akad. Nauk SSSR 32, 16–18 (1941)
Kraichnan R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids 10(7), 1417–1423 (1967)
Kukavica I., Vicol V.: On the radius of analyticity of solutions to the three-dimensional Euler equations. Proc. Am. Math. Soc. 137(2), 669–677 (2009)
Landau L.: On the vibration of the electronic plasma. J. Phys. USSR 10(25) (1946)
Latini M., Bernoff A.J.: Transient anomalous diffusion in Poiseuille flow. J. Fluid Mech. 441, 399–411 (2001)
Levermore D., Oliver M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 133, 321–339 (1997)
Li Y.C., Lin Z.: A resolution of the Sommerfeld paradox. SIAM J. Math. Anal. 43(4), 1923–1954 (2011)
Lin Z., Zeng C.: Inviscid dynamic structures near Couette flow. Arch. Ration. Mech. Anal. 200, 1075–1097 (2011)
Lindzen R.: Instability of plane parallel shear flow (toward a mechanistic picture of how it works). PAGEOPH 126(1), 103–121 (1988)
Lundgren T.S.: Strained spiral vortex model for turbulent fine structure. Phys. Fluid 25, 2193 (1982)
Malmberg J., Wharton C., Gould C., O’Neil T.: Plasma wave echo. Phys. Rev. Lett. 20(3), 95–97 (1968)
Morrison P.J.: Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70(2), 467–521 (1998)
Mouhot C., Villani C.: On Landau damping. Acta Math. 207, 29–201 (2011)
Nirenberg L.: An abstract form of the nonlinear Cauchy–Kowalewski theorem. J. Differ. Geom. 6, 561–576 (1972)
Nishida T.: A note on a theorem of Nirenberg. J. Differ. Geom. 12, 629–633 (1977)
Orr W.: The stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect liquid. Proc. R. Irish Acad. Sec. A Math. Phys. Sci. 27, 9–68 (1907)
Rayleigh L.: On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. S1–S11(1), 57 (1880)
Rhines P.B., Young W.R.: How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133–145 (1983)
Ryutov D.D.: Landau damping: half a century with the great discovery.Plasma Phys. control. Fusion 41(3A), A1 (1999)
Schecter D.A., Dubin D., Cass A.C., Driscoll C.F., Lansky I.M., et. al.: Inviscid damping of asymmetries on a two-dimensional vortex. Phys. Fluid 12, 2397–2412 (2000)
Taylor G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 219(1137), 186–203 (1953)
Trefethen L.N., Embree M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, New Jersey, 2005
Trefethen L.N., Trefethen A.E., Reddy S.C., Driscoll T.A.: Hydrodynamic stability without eigenvalues. Science 261(5121), 578–584 (1993)
Vanneste J.: Nonlinear dynamics of anisotropic disturbances in plane Couette flow. SIAM J. Appl. Math. 62(3), 924–944 (electronic) (2002)
Vanneste J., Morrison P.J., Warn T.: Strong echo effect and nonlinear transient growth in shear flows. Phys. Fluids 10, 1398 (1998)
Villani C.: Hypocoercivity. American Mathematical Society, Providence, 2009
Yaglom A.M.: Hydrodynamic Instability and Transition to Turbulence, vol. 100. Springer, Berlin, 2012
Young W., Pumir A., Pomeau Y.: Anomalous diffusion of tracer in convection rolls. Phys. Fluids A Fluid Dyn. (1989–1993) 1, 462–469 (1989)
Yu J.H., Driscoll C.F.: Diocotron wave echoes in a pure electron plasma. IEEE Trans. Plasma Sci. 30(1), 24–25 (2002)
Yu, J.H., Driscoll, C.F., O‘Neil, T.M.: Phase mixing and echoes in a pure electron plasma. Phys. Plasmas 12(055701) (2005)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by V. Šverák
Rights and permissions
About this article
Cite this article
Bedrossian, J., Masmoudi, N. & Vicol, V. Enhanced Dissipation and Inviscid Damping in the Inviscid Limit of the Navier–Stokes Equations Near the Two Dimensional Couette Flow. Arch Rational Mech Anal 219, 1087–1159 (2016). https://doi.org/10.1007/s00205-015-0917-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-015-0917-3