Skip to main content
Log in

Steklov Eigenvalues and Quasiconformal Maps of Simply Connected Planar Domains

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We investigate isoperimetric upper bounds for sums of consecutive Steklov eigenvalues of planar domains. The normalization involves the perimeter and scale-invariant geometric factors which measure deviation of the domain from roundness. We prove sharp upper bounds for both starlike and simply connected domains for a large collection of spectral functionals including partial sums of the zeta function and heat trace. The proofs rely on a special class of quasiconformal mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aissen M.I: A set function defined for convex plane domaines. Pac. J. Math. 8, 383–399 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  2. : Steklov eigenproblems and the representation of solutions of elliptic boundary value problems. Numer. Funct. Anal. Optim. 25(3–4), 321–348 (2004)

    MATH  MathSciNet  Google Scholar 

  3. BandleC.: Isoperimetric Inequalities and Applications, Monographs and Studies in Mathematics, vol. 7. Pitman (Advanced Publishing Program), Boston, 1980

  4. Brock. F.: An isoperimetric inequality for eigenvalues of the Stekloff problem. ZAMM Z. Angew. Math. Mech. 81(1), 69–71 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bucur D., Buttazzo G., Henrot. A.: Minimization of \({\lambda_{2}(\Omega)}\) with a perimeter constraint. Indiana Univ. Math. J. 58(6), 2709–2728 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Colbois B., El Soufi A., Girouard A.: Isoperimetric control of the Steklov spectrum. J. Funct. Anal. 261(5), 1384–1399 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dittmar B.: Stekloffsche Eigenwerte und konforme Abbildungen. Z. Anal. Anwendungen 7(2), 149–163 (1988)

    MATH  MathSciNet  Google Scholar 

  8. Dittmar B.: Sums of reciprocal Stekloff eigenvalues. Math. Nachr. 268, 44–49 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dittmar, B.: Sums of Reciprocal Eigenvalues, Complex Analysis and Potential Theory, pp. 54–65. World Sci. Publ., Hackensack, 2007

  10. Edward J.: An inequality for Steklov eigenvalues for planar domains. Z. Angew. Math. Phys. 45, 493–496 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Escobar J. F.: The geometry of the first non-zero Stekloff eigenvalue. J. Funct. Anal. 150(2), 544–556 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fraser A., Schoen R.: The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226, 4011–4030 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Garau E. M., Morin P.: Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems. IMA J. Numer. Anal. 31(3), 914–946 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Girouard, I. Polterovich: Shape optimization for low Neumann and Steklov eigenvalues. Math. Methods Appl. Sci. 33(4), 501–516 (2010)

    MathSciNet  Google Scholar 

  15. Girouard A., Polterovich I.: On the Hersch–Payne–Schiffer estimates for the eigenvalues of the Steklov problem. Funct. Anal. Appl. 44(2), 106–117 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Girouard A., Polterovich I.: Upper bounds for Steklov eigenvalues on surfaces. Electron. Res. Announc. Math. Sci. 19, 77–85 (2012)

    MATH  MathSciNet  Google Scholar 

  17. Girouard, A., Polterovich, I.: Spectral geometry of the Steklov problem. J. Spectr. Theory (to appear). arXiv:1411.6567

  18. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988 (reprint of the 1952 edition)

  19. Harrell E. M., Hermi L.: Differential inequalities for Riesz means and Weyl-type bounds for eigenvalues. J. Funct. Anal. 254(12), 3173–3191 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hassannezhad A.: Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem. J. Funct. Anal. 261(12), 3419–3436 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Henrot A., Oudet E.: Le stade ne minimise pas \({\lambda_2}\) parmi les ouverts convexes du plan. C. R. Acad. Sci. Paris Sér. I Math. 332(5), 417–422 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Henrot A., Philippin G. A.: Safoui Some isoperimetric inequalities with application to the Stekloff problem. J. Convex Anal. 15(3), 581–592 (2008)

    MATH  MathSciNet  Google Scholar 

  23. Hersch J., Payne L.E.: Extremal principles and isoperimetric inequalities for some mixed problems of Stekloff’s type. Z. Angew. Math. Phys. 19, 802–817 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hersch J., Payne L. E., Schiffer M. M.: Some inequalities for Stekloff eigenvalues. Arch. Rational Mech. Anal. 57, 99–114 (1975)

    MathSciNet  ADS  MATH  Google Scholar 

  25. Ilias S., Makhoul O.: A Reilly inequality for the first Steklov eigenvalue. Differ. Geom. Appl. 29, 699–708 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jammes, P.: Une inégalité de Cheeger pour le spectre de Steklov. Ann. Inst. Fourier (to appear)

  27. Kulczycki, T., Kwaśnicki, M., Siudeja, B.: On the shape of the fundamental sloshing mode in axisymmetric containers (preprint). arXiv:1411.2572

  28. Kuttler J. R., Sigillito V. G.: Lower bounds for Stekloff and free membrane eigenvalues. SIAM Rev. 10, 368–370 (1968)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Kuznetsov N., Kulczycki T., Kwaśnicki M., Nazarov A., Poborchi S., Polterovich I., Siudeja B.: The legacy of Vladimir Andreevich Steklov. Notices Am. Math. Soc. 61(1), 9–22 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lamberti, P.D., Provenzano, L.: Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues. In: Proceedings of the 9th ISAAC Congress, Kraków (2013). arXiv:1410.0517

  31. Laugesen R. S., Morpurgo C.: Extremals for eigenvalues of Laplacians under conformal mapping. J. Funct. Anal. 155(1), 64–108 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Laugesen R. S., Siudeja B. A.: Sharp spectral bounds on starlike domains. J. Spectr. Theory 4(2), 309–347 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  33. Laugesen R. S., Siudeja B. A.: Magnetic spectral bounds on starlike plane domains. ESAIM Control Optim. Calc. Var. 21(3), 670–689 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  34. Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane, 2nd edn. Springer, New York, 1973 (translated from the German by K. W. Lucas, Die Grundlehren der mathematischen Wissenschaften, Band 126)

  35. Li P., Yau S.T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88(3), 309–318 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Logg, A., Mardal, K.-A., Wells, G.N. (eds). Automated solution of differential equations by the finite element method. In: The FEniCS book, Lecture Notes in Computational Science and Engineering, vol. 84. Springer, Heidelberg, 2012

  37. Payne L. E.: Isoperimetric inequalities and their applications. SIAM Rev. 9, 453–488 (1967)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Payne L. E.: Some isoperimetric inequalities for harmonic functions. SIAM J. Math. Anal. 1, 354–359 (1970) [Erratum, SIAM J. Math. Anal. 5, 847 (1974)]

    Article  MATH  MathSciNet  Google Scholar 

  39. Pólya G., Schiffer M.: Convexity of functionals by transplantation. J. Anal. Math. 3, 245–346 (1954) (with an appendix by Heinz Helfenstein)

    Article  MATH  MathSciNet  Google Scholar 

  40. Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27. Princeton University Press, Princeton, 1951

  41. Siudeja, B.: Generalized tight p-frames and spectral bounds for Laplace-like operators. arXiv:1409.7409

  42. Steklov V.: Sur les problèmes fondamentaux de la physique mathématique. Ann. Sci. Ecole Norm. Sup. 19, 455–490 (1902)

    MathSciNet  Google Scholar 

  43. Sylvester, J., Uhlmann, G.: The Dirichlet to Neumann map and applications, Inverse problems in partial differential equations (Arcata, CA, 1989), pp. 101–139. SIAM, Philadelphia, 1990

  44. Weinstock R.: Inequalities for a classical eigenvalue problem. J. Rational Mech. Anal. 3, 745–753 (1954)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Siudeja.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girouard, A., Laugesen, R.S. & Siudeja, B.A. Steklov Eigenvalues and Quasiconformal Maps of Simply Connected Planar Domains. Arch Rational Mech Anal 219, 903–936 (2016). https://doi.org/10.1007/s00205-015-0912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0912-8

Keywords

Navigation