On Dynamics of Lagrangian Trajectories for Hamilton–Jacobi Equations


Characteristic curves of a Hamilton–Jacobi equation can be seen as action minimizing trajectories of fluid particles. However this description is valid only for smooth solutions. For nonsmooth “viscosity” solutions, which give rise to discontinuous velocity fields, this picture holds only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we discuss two physically meaningful regularization procedures, one corresponding to vanishing viscosity and another to weak noise limit. We show that for any convex Hamiltonian, a viscous regularization allows us to construct a nonsmooth flow that extends particle trajectories and determines dynamics inside the shock manifolds. This flow consists of integral curves of a particular “effective” velocity field, which is uniquely defined everywhere in the flow domain and is discontinuous on shock manifolds. The effective velocity field arising in the weak noise limit is generally non-unique and different from the viscous one, but in both cases there is a fundamental self-consistency condition constraining the dynamics.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bec, J., Khanin, K.: Burgers turbulence. Phys. Rep. 447(1–2), 1–66, 2007

  2. 2.

    Bogaevsky I.A.: Perestroikas of shocks and singularities of minimum functions. Phys. D: Nonlinear Phenom. 173(1–2), 1–28 (2002)

    MATH  MathSciNet  Article  ADS  Google Scholar 

  3. 3.

    Bogaevsky, I.A.: Matter Evolution in Burgulence. arXiv:math-ph/0407073, 2004

  4. 4.

    Bogaevsky I.A.: Discontinuous gradient differential equations and trajectories in the calculus of variations. Sbornik Math. 197(12), 1723–1751 (2006)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  5. 5.

    Bregman L.M.: A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. and Math. Phys. 7, 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. 6.

    Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematical Studies, vol. 5. North-Holland, Amsterdam, 1973

  7. 7.

    Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Progress in Nonlinear Differential Equations and their Applications, vol. 58. Birkhäuser Boston, Inc., Boston, MA, 2004

  8. 8.

    Cannarsa, P., Yu, Y.: Singular dynamics for semiconcave functions. J. Eur. Math. Soc. 2009

  9. 9.

    Clarke, F.H.: Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, vol. 5. SIAM, 1990

  10. 10.

    Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67, 1992

  11. 11.

    Dafermos, C.M.: Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, 2 edn. springer, 2005

  12. 12.

    Fathi, A.: Weak KAM Theorem in Lagrangian Dynamics. Cambridge Univ. Press, Cambridge, 2016

  13. 13.

    Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions, Stochastic Modelling and Applied Probability, vol. 25, 2 edn. Springer, New York, 2005

  14. 14.

    Gangbo W., McCann R.J.: The geometry of optimal transportation. Acta Math. 177(2), 113–161 (1996)

    MATH  MathSciNet  Article  Google Scholar 

  15. 15.

    Hopf, E.: The partial differential equation u t  + uu x μu xx . Commun. Pure Appl. Math. 3, 201–230, 1950

  16. 16.

    Khanin K., Sobolevski A.: Particle dynamics inside shocks in hamilton-jacobi equations. Philos. Trans. R. Soc. Lond. 368, 1579–1593 (2010)

    MATH  MathSciNet  Article  ADS  Google Scholar 

  17. 17.

    Khesin, B.A., Misiołek, G.: Analysis and Singularities, Tr. Mat. Inst. Steklova, vol. 259, chap. Shock waves for the Burgers equation and curvatures of diffeomorphismgroups. Nauka, Moscow, 2007

  18. 18.

    Kružkov, S.N.: Generalized solutions of hamilton–jacobi equations of eikonal type. Mat. Sb. 98(140)(3(11)), 450–493, 1975

  19. 19.

    Lax P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computaton. Commun. Pure Appl. Math. 7, 159–193 (1954)

    MATH  MathSciNet  Article  Google Scholar 

  20. 20.

    Lax P.D.: Hyperbolic systems of conservation laws. cpam 10, 537–566 (1957)

    MATH  MathSciNet  Google Scholar 

  21. 21.

    Lions, P.L.: Generalized solutions of Hamilton–Jacobi equations, Research Notes in Mathematics, vol. 69. Pitman (Advanced Publishing Program), Boston, Mass.–London, 1982

  22. 22.

    Olenik O.A.: On cauchy’s problem for nonlinear equations in a class of discontinuous functions. Doklady Akad. Nauk SSSR (N.S.) 95(3), 451–455 (1954)

    MathSciNet  Google Scholar 

  23. 23.

    Rockafellar, R.T.: Convex analysis, Princeton Mathematical Series, vol. 28. Princeton Univ. Press, Princeton, NJ, 1970

  24. 24.

    Strömberg T.: Propagation of singularities along broken characteristics. Nonlinear Anal.: Theory Methods Appl. 85, 93–109 (2013)

    MATH  Article  MathSciNet  Google Scholar 

  25. 25.

    Villani, C.: Optimal transport: Old and new, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. springer, 2009

  26. 26.

    Weinan, E., Khanin, K., Mazel, A., Sinai, Y.: Invariant measures for burgers equation with stochastic forcing. Ann. Math. (2) 151(3), 877–960, 2000

Download references

Author information



Corresponding author

Correspondence to Andrei Sobolevski.

Additional information

We acknowledge the support of the French Ministry for Science and Higher Education. A.S. gratefully acknowledges the support of the Simons-IUM fellowship and hospitality of Department of Mathematics, University of Toronto. K.K. acknowledges support of the NSERC Discover Grant.

Communicated by C. Dafermos

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khanin, K., Sobolevski, A. On Dynamics of Lagrangian Trajectories for Hamilton–Jacobi Equations. Arch Rational Mech Anal 219, 861–885 (2016). https://doi.org/10.1007/s00205-015-0910-x

Download citation


  • Viscosity Solution
  • Integral Curve
  • Burger Equation
  • Jacobi Equation
  • Integral Curf